期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
提升零样本工业异常检测方法泛化性的属性无关提示学习分析 被引量:1
1
作者 刘桂雄 闫奕樸 +1 位作者 陈贵龙 邢星奥 《激光杂志》 北大核心 2025年第5期64-70,共7页
工业异常检测是制造过程质量控制核心环节,零样本工业异常检测属性无关提示学习是提升泛化性有效途径。本文面向工业生产应用,针对零样本工业异常检测属性无关提示学习,从可学习文本提示、物体解耦文本提示两个方面的基本原理、框架、... 工业异常检测是制造过程质量控制核心环节,零样本工业异常检测属性无关提示学习是提升泛化性有效途径。本文面向工业生产应用,针对零样本工业异常检测属性无关提示学习,从可学习文本提示、物体解耦文本提示两个方面的基本原理、框架、流程与应用性能等内容,系统分析比较各方法应用特点,指出图像与文本共同优化提示,以及细化异常特征描述是该领域值得关注方向,对工业异常检测技术研究人员具有指导参考价值。 展开更多
关键词 工业异常检测 属性无关提示学习 大模型 零样本
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部