期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
结合优化U⁃Net和残差神经网络的单通道语音增强算法 被引量:7
1
作者 许春冬 徐琅 周滨 《现代电子技术》 2022年第9期35-40,共6页
语音增强的目的是从带噪语音中恢复出干净的语音信号,为了解决现有深度神经网络中语音增强算法不稳定,语音增强效果不理想的问题,提出一种改进的U⁃Net网络与残差神经网络相结合的语音增强算法。首先,该方法构建了一个基于U⁃Net网络的端... 语音增强的目的是从带噪语音中恢复出干净的语音信号,为了解决现有深度神经网络中语音增强算法不稳定,语音增强效果不理想的问题,提出一种改进的U⁃Net网络与残差神经网络相结合的语音增强算法。首先,该方法构建了一个基于U⁃Net网络的端到端的语音增强模型;然后在该模型的编解码块中引入残差单元,将残差神经网络结构的跨层连接和拟合残差项应用到模型训练中,该方法更有利于恢复目标语音的细节特征信息,增强了模型训练的稳定性,提高了模型的特征提取能力和训练效率,改进后的Residual⁃U⁃Net网络模型能够实现更优的语音增强效果。仿真实验结果表明:与现有的其他几种语音增强方法相比,文中所提出的Residual⁃U⁃Net算法更有效地实现了语音增强,此外,该算法具有良好的去噪效果,进一步提高了语音信号的质量及其可懂度。 展开更多
关键词 语音增强 神经网络 U⁃Net 残差神经网络 连接 模型训练 残差单元引入 特征提取
在线阅读 下载PDF
面向触觉识别的神经结构搜索算法
2
作者 邹子超 李玉良 +1 位作者 陈萌 马飞红 《哈尔滨工程大学学报》 北大核心 2025年第6期1209-1217,共9页
针对手工设计神经网络需要耗费一定时间和精力的问题,本文提出了一种基于自学习遗传算法的两级式神经结构搜索算法,并应用于触觉识别领域。设计了一种自学习遗传算法,利用强化学习优化遗传算法的选择、交叉和变异算子,以求遗传算法加速... 针对手工设计神经网络需要耗费一定时间和精力的问题,本文提出了一种基于自学习遗传算法的两级式神经结构搜索算法,并应用于触觉识别领域。设计了一种自学习遗传算法,利用强化学习优化遗传算法的选择、交叉和变异算子,以求遗传算法加速收敛,并在陷入局部最优时跳出局部最优;基于自学习遗传算法,提出了两级式神经网络结构搜索算法,用于搜索适合处理触觉时序数据的卷积神经网络和循环神经网络串联模型,且为卷积神经网络和循环神经网络模块引入了层间残差连接以解决网络退化问题,并使用公开触觉数据集对算法进行了实验验证。自建包含22类实验样品的触觉数据集,基于数据集进行了搜索算法实验,并对搜索得到的最优网络进行了分类识别测试,识别准确率为96.81%,与长短期记忆网络、门控循环单元网络和卷积神经网络与长短记忆网络串联模型进行对比,对比结果显示:本文搜索算法搜索出的网络性能更加优异,识别率更高,进一步证明了算法的有效性。 展开更多
关键词 神经网络结构搜索 触觉识别 强化学习 遗传算法 卷积神经网络循环神经网络串联模型 触觉传感器 卷积神经网络循环神经网络串联模型 层间残差连接循环神经网络模型
在线阅读 下载PDF
深度残差网络模型的构建及其在糖尿病预测中的应用 被引量:1
3
作者 左星光 范静 《现代电子技术》 2022年第15期30-35,共6页
为提高糖尿病预测准确率和精度,针对糖尿病数据特性,构建由全连接层组成的深度残差网络。在残差块中加入批量标准化层,去除了Dropout层,进而确定了各层的排列顺序。分别使用3种不同激活函数和4种不同的优化算法时,对比深度残差网络的准... 为提高糖尿病预测准确率和精度,针对糖尿病数据特性,构建由全连接层组成的深度残差网络。在残差块中加入批量标准化层,去除了Dropout层,进而确定了各层的排列顺序。分别使用3种不同激活函数和4种不同的优化算法时,对比深度残差网络的准确率、精度、召回值、F1值和平均准确率等评价指标值,进而选择Tanh作为模型激活函数,自适应矩估计(Adam)作为模型优化算法。采用梯度提升树算法选取影响糖尿病的主要特征,针对UCI糖尿病原始数据集和样本均衡数据集,将深度残差网络与随机森林模型、朴素贝叶斯模型、决策树模型、支持向量机模型、逻辑回归模型进行对比分析。预测结果表明,深度残差网络优于全连接神经网络;对于原始数据集和样本均衡数据集,深度残差网络模型的准确率和精度均优于相比较的其余5种预测模型。 展开更多
关键词 糖尿病预测 深度残差网络模型 神经网络 连接 激活函数 优化算法 准确率 精度
在线阅读 下载PDF
光学遥感图像中舰船识别方法研究 被引量:2
4
作者 丁梦磊 《舰船科学技术》 北大核心 2024年第16期143-147,共5页
光遥感图像舰船目标在检测识别过程中会存在诸多干扰,导致无法精准识别出舰船目标,对此,研究光学遥感图像中舰船识别方法。首先,在光学遥感图像内提取舰船目标显著性区域,抑制云雾、海杂波与海域陆地等背景信息对舰船目标识别的影响,完... 光遥感图像舰船目标在检测识别过程中会存在诸多干扰,导致无法精准识别出舰船目标,对此,研究光学遥感图像中舰船识别方法。首先,在光学遥感图像内提取舰船目标显著性区域,抑制云雾、海杂波与海域陆地等背景信息对舰船目标识别的影响,完成光学遥感图像舰船目标的粗识别。然后,基于提取到的光学遥感图像显著性区域,利用CNN网络对其进行舰船目标精识别。实验结果表明,设计方法可以有效提取光学遥感图像的舰船目标显著性区域,并提取显著性区域的舰船目标特征;舰船目标识别精度始终高于95%,具有实用性。 展开更多
关键词 卷积神经网络 光学遥感图像 舰船目标识别 残差模型 最大值-均值 连接
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部