期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
融合层注意力机制的多视角图对比学习推荐方法
1
作者 钱忠胜 黄恒 +1 位作者 朱辉 刘金平 《计算机研究与发展》 北大核心 2025年第1期160-178,共19页
图对比学习因其可有效缓解数据稀疏问题被广泛应用在推荐系统中.然而,目前大多数基于图对比学习的推荐算法均采用单一视角进行学习,这极大地限制了模型的泛化能力,且图卷积网络本身存在的过度平滑问题也影响着模型的稳定性.基于此,提出... 图对比学习因其可有效缓解数据稀疏问题被广泛应用在推荐系统中.然而,目前大多数基于图对比学习的推荐算法均采用单一视角进行学习,这极大地限制了模型的泛化能力,且图卷积网络本身存在的过度平滑问题也影响着模型的稳定性.基于此,提出一种融合层注意力机制的多视角图对比学习推荐方法.一方面,该方法提出2种不同视角下的3种对比学习,在视图级视角下,通过对原始图添加随机噪声构建扰动增强视图,利用奇异值分解(singular value decomposition)重组构建SVD增强视图,对这2个增强视图进行视图级对比学习;在节点视角下,利用节点间的语义信息分别进行候选节点和候选结构邻居对比学习,并将3种对比学习辅助任务和推荐任务进行多任务学习优化,以提高节点嵌入的质量,从而提升模型的泛化能力.另一方面,在图卷积网络学习用户和项目的节点嵌入时,采用层注意力机制的方式聚合最终的节点嵌入,提高模型的高阶连通性,以缓解过度平滑问题.在4个公开数据集LastFM,Gowalla,Ifashion,Yelp上与10个经典模型进行对比,结果表明该方法在Recall,Precision,NDCG这3个指标上分别平均提升3.12%,3.22%,4.06%,这说明所提方法是有效的. 展开更多
关键词 层注意力机制 对比学习 图卷积网络 多任务学习 推荐系统
在线阅读 下载PDF
融合多层注意力机制与CNN-LSTM的反向散射信道预测
2
作者 徐双 文永新 +3 位作者 刘文斌 李佳龙 李灯熬 赵菊敏 《小型微型计算机系统》 CSCD 北大核心 2024年第9期2278-2284,共7页
反向散射通信系统频谱资源十分有限且易受链路突变性影响,信道预测是提高其频谱资源利用率和通信质量的一种有效方法.但大多数现有预测方法的预测精度偏低、依赖完全已知的信道状态信息、适用性受限.为此,本文提出了一种融合多层注意力... 反向散射通信系统频谱资源十分有限且易受链路突变性影响,信道预测是提高其频谱资源利用率和通信质量的一种有效方法.但大多数现有预测方法的预测精度偏低、依赖完全已知的信道状态信息、适用性受限.为此,本文提出了一种融合多层注意力机制与卷积神经网络-长短期记忆网络(Convolutional Neural Networks-Long Short-Term Memory,CNN-LSTM)的信道预测方法.利用CNN模型与注意力机制提取接收信号强度序列的特征,并进一步使用LSTM模型与注意力机制提取其跨时间步长的特征,从而实现对信道指标的预测.最后,借助商用阅读器与标签采集3种不同场景下的信道状态数据,并基于Tensorflow与Keras验证了所提预测方法性能.结果表明,融合多层注意力机制与CNN-LSTM的信道预测方法具有较强的场景适用性,且其预测准确性较高. 展开更多
关键词 反向散射通信 信道预测 卷积神经网络 长短期记忆网络 层注意力机制
在线阅读 下载PDF
基于多层注意力机制的4DC-BGRU脑电情感识别 被引量:5
3
作者 张丽彩 李鸿燕 +1 位作者 司马飞扬 申雁 《电子测量技术》 北大核心 2023年第8期134-141,共8页
为了提高脑电情感识别的准确率,提取更丰富的特征信息,提升网络模型稳定性,提出一种改进的基于多层注意力机制的脑电情感识别模型。在特征提取方面,将原始脑电信号转换成四维空间-频谱-时间结构,提取丰富的脑电信息。在网络模型方面,构... 为了提高脑电情感识别的准确率,提取更丰富的特征信息,提升网络模型稳定性,提出一种改进的基于多层注意力机制的脑电情感识别模型。在特征提取方面,将原始脑电信号转换成四维空间-频谱-时间结构,提取丰富的脑电信息。在网络模型方面,构建双路卷积神经网络学习空间及频率信息,有效提取多尺度特征,增加网络宽度来学习更丰富的特征信息;在卷积层及池化层后融入批量归一化层,防止过拟合。最后,构建多层注意力机制-双向门控循环单元模块处理时间特征并配合Softmax分类。采用双向门控循环单元学习更全面的上下级特征信息。利用多层注意力机制使四维特征中不同时间切片与整体时间切片之间产生关联。该文在DEAP数据集唤醒度和效价两个维度进行了评估实验,二分类平均准确率分别为96.38%和96.73%,四分类平均准确率为93.78%。实验结果显示,与单路卷积神经网络及其他文献算法相比,该文算法的平均准确率有所提高,表明该算法可以有效提升脑电情感识别性能。 展开更多
关键词 脑电情感识别 双路卷积神经网络 多尺度特征 层注意力机制 双向门控循环单元
在线阅读 下载PDF
基于多层注意力机制的回指消解算法
4
作者 刘雨江 付立军 +1 位作者 刘俊明 吕鹏飞 《计算机工程》 CAS CSCD 北大核心 2020年第2期59-64,71,共7页
在信息抽取过程中,无法被判别的回指易造成信息抽取不完整的情况,这种指代关系可通过分析当前语境下的指代部分、被指代部分、周围的信息及原文内容生成的唯一判别信息进行判断。为此,构建一个多层注意力机制模型,在不同层次上对上述信... 在信息抽取过程中,无法被判别的回指易造成信息抽取不完整的情况,这种指代关系可通过分析当前语境下的指代部分、被指代部分、周围的信息及原文内容生成的唯一判别信息进行判断。为此,构建一个多层注意力机制模型,在不同层次上对上述信息进行基于注意力机制的概率计算,利用最终结果判别回指关系是否成立。在指代部分与被指代部分向量化后,通过2个注意力层上的4次概率计算,使每一个训练结果在判别之前都具有唯一性。在OntoNotes 5.0数据集上的实验结果表明,该模型F值在显性指代和零指代均存在的条件下为70.1%,在存在零指代的条件下为60.7%,高于尹庆宇等人提出的模型。 展开更多
关键词 指代关系 注意力机制 显性指代 零指代 层注意力机制模型
在线阅读 下载PDF
基于注意力机制与LSTM-CCN的月降水量预测 被引量:6
5
作者 周祥 张世明 +1 位作者 苏林鹏 张守平 《人民长江》 北大核心 2024年第6期129-135,共7页
针对现有月降水量预测方法预测准确性不高的问题,提出一种基于注意力机制与LSTM-CCN的月降水量预测方法。首先,利用长短时记忆神经网络(long short-term memory neural network,LSTM)提取气象数据在时间维度的特征分布,从时间相关性方... 针对现有月降水量预测方法预测准确性不高的问题,提出一种基于注意力机制与LSTM-CCN的月降水量预测方法。首先,利用长短时记忆神经网络(long short-term memory neural network,LSTM)提取气象数据在时间维度的特征分布,从时间相关性方面捕获相邻时间段或长距离气象数据段中的统计分布;其次,利用因果卷积神经网络(causal convolutional network,CCN)将气象数据映射到空间维度,深层次地从空间维度捕获气象数据在空间中的特征统计分布;再次,以并联的方式将时间和空间特征作为交叉注意力网络的输入,构造融合的时空特征;最后,以长短时记忆神经网络构造解码器,并将融合的时空特征作为解码器的输入,预测的月降水量作为输出。选取河南省新乡市2001~2017年数据集进行测试,结果表明:所提出方法的均方根误差仅为13.08 mm,相比主流方法具有更低的预测误差。研究成果可为提高气象预测的准确性和实用性提供参考。 展开更多
关键词 月降水量预测 层注意力机制 因果卷积神经网络 长短时记忆神经网络
在线阅读 下载PDF
融合RoBERTa和注意力机制的隐喻方面级情感分析 被引量:4
6
作者 马圆圆 禹龙 +2 位作者 田生伟 钱梦莹 张立强 《小型微型计算机系统》 CSCD 北大核心 2023年第10期2236-2241,共6页
针对目前大多数隐喻情感分析方法存在对方面情感注意力引入不足的问题,提出一种用于隐喻方面级情感分类的模型.模型首先通过RoBERTa对具有方面情感信息的文本进行编码,将编码后的方面信息和多层情感注意力信息融合,形成多层方面注意力... 针对目前大多数隐喻情感分析方法存在对方面情感注意力引入不足的问题,提出一种用于隐喻方面级情感分类的模型.模型首先通过RoBERTa对具有方面情感信息的文本进行编码,将编码后的方面信息和多层情感注意力信息融合,形成多层方面注意力表征向量.将该表征向量与隐喻句的关联结果作为文本原始特征,利用注意力机制和方面信息对其解码,然后通过卷积网络计算隐喻句与方面词的关联度.将池化层输出结果和卷积计算结果合并,最后计算隐喻句不同方面词的情感极性的概率,完成隐喻情感分析.实验结果表明该模型对3种情感极性的平均判断准确率分别达到了83.26%,81.69%和56.68%,与基线实验相比均有所提升. 展开更多
关键词 隐喻情感分析 方面级情感分析 层注意力机制 RoBERTa
在线阅读 下载PDF
基于知识图谱嵌入的异构图欺诈用户检测
7
作者 吕舒琦 张云峰 《计算机科学》 北大核心 2025年第S2期933-939,共7页
在信用支付服务场景中,欺诈用户的检测问题一直是一个研究热点。在深度学习方法中,通常使用异质信息网络来建模不同类型的节点对象及其交互关系,如用节点表示支付服务场景中的用户及商家,用边来表示节点之间的交互关系,以充分利用图的... 在信用支付服务场景中,欺诈用户的检测问题一直是一个研究热点。在深度学习方法中,通常使用异质信息网络来建模不同类型的节点对象及其交互关系,如用节点表示支付服务场景中的用户及商家,用边来表示节点之间的交互关系,以充分利用图的结构信息。然而,已经提出的很多模型在捕捉节点特征信息时,往往只关注元路径端节点而忽略了元路径中间节点的信息,这将导致信息丢失的问题。因此,提出了一种基于知识图谱嵌入的异构图欺诈用户检测模型。首先,引入知识图谱嵌入方法作为元路径内部聚合编码器,与只关注元路径上端节点的方法不同,元路径内部聚合编码器在获取节点信息时会同时关注元路径中间节点,以聚集整条元路径上的节点信息,能够有效解决信息丢失的问题。除此之外,设计了一个多层融合注意力机制,从节点以及路径层面模拟用户对属性和元路径的偏好,并在全局层面以融合的角度分析特征的重要程度。在不同类型数据集上的实验结果表明,与现有的多种欺诈检测方法相比,所提模型取得了相对较好的结果。 展开更多
关键词 欺诈检测 图神经网络 异构图 知识图谱嵌入 融合注意力机制
在线阅读 下载PDF
基于弱监督学习的小样本早期苹果叶片病害检测 被引量:1
8
作者 王勇 周强 吴凯 《中国农机化学报》 北大核心 2024年第12期193-199,共7页
针对现有苹果叶片病害检测方法的性能过度依赖标注数据集的问题,提出一种基于弱监督学习的小样本早期苹果叶片病害检测算法。首先,利用一组共享权重的主干网络将病害叶片映射到高维特征空间;其次,利用多层注意力机制建立双分支特征语义... 针对现有苹果叶片病害检测方法的性能过度依赖标注数据集的问题,提出一种基于弱监督学习的小样本早期苹果叶片病害检测算法。首先,利用一组共享权重的主干网络将病害叶片映射到高维特征空间;其次,利用多层注意力机制建立双分支特征语义关联模块,并在关联语义特征图上生成指导查询图片中新病害类型分类的原型集;再次,利用无参数的匹配方法计算原型集与查询图片中新病害叶片特征间的相似度,根据相似度值定位与识别病害区域;最后,利用虚线框标注建立弱监督学习机制,并借助标签平滑交叉损失端到端优化模型。通过在开源的Plant Village数据集和自建的早期苹果叶片病害数据集上进行试验,所提出方法分别实现96.39%、94.81%的精准率,96.71%、94.67%的召回率和97.24%、95.20%的F1值,优于当前经典的目标识别算法。 展开更多
关键词 苹果叶片病害检测 小样本学习 弱监督学习 层注意力机制
在线阅读 下载PDF
融合角色心理画像的心理健康文本匹配模型
9
作者 赵芸 刘德喜 +2 位作者 万常选 刘喜平 廖国琼 《计算机研究与发展》 EI CSCD 北大核心 2024年第7期1812-1824,共13页
全球心理健康问题形势严峻,由于心理健康服务的从业人员不足,遭受心理健康困扰的人并不总是能获得专业的心理健康服务.检索式心理健康社区自动问答可以快速地为需要心理健康服务的人提供相应的信息自助服务.与传统检索式社区问答中的文... 全球心理健康问题形势严峻,由于心理健康服务的从业人员不足,遭受心理健康困扰的人并不总是能获得专业的心理健康服务.检索式心理健康社区自动问答可以快速地为需要心理健康服务的人提供相应的信息自助服务.与传统检索式社区问答中的文本匹配不同,在匹配支持帖和求助帖时,需要考虑2种不同层面的匹配准则:语义层面和心理层面.为了解决该问题,提出融合角色心理画像的2阶段文本匹配模型(two-stage text matching model integrating characters’mental portrait,T2CMP),该模型引入心理特征用于构建角色心理画像,从而辅助模型理解文本心理层面的内容和匹配关系.同时为了提升检索效率以及减少大量负样例带来的噪声问题,将文本匹配任务拆分为2阶段的序列型子任务.首先针对每条求助帖,使用基于语义的筛选模型甄别出候选支持帖;然后依据用户的角色心理画像,使用多层注意力机制将其与语义信息有效融合,提高模型的总体效果.在MHCQA数据集上的实验结果显示,T2CMP比现有优秀算法拥有更高的F1值. 展开更多
关键词 文本匹配 2阶段模型 角色心理健康画像 层注意力机制 心理健康信息自助服务
在线阅读 下载PDF
基于变分信息瓶颈的半监督神经机器翻译 被引量:7
10
作者 于志强 余正涛 +2 位作者 黄于欣 郭军军 高盛祥 《自动化学报》 EI CAS CSCD 北大核心 2022年第7期1678-1689,共12页
变分方法是机器翻译领域的有效方法,其性能较依赖于数据量规模.然而在低资源环境下,平行语料资源匮乏,不能满足变分方法对数据量的需求,因此导致基于变分的模型翻译效果并不理想.针对该问题,本文提出基于变分信息瓶颈的半监督神经机器... 变分方法是机器翻译领域的有效方法,其性能较依赖于数据量规模.然而在低资源环境下,平行语料资源匮乏,不能满足变分方法对数据量的需求,因此导致基于变分的模型翻译效果并不理想.针对该问题,本文提出基于变分信息瓶颈的半监督神经机器翻译方法,所提方法的具体思路为:首先在小规模平行语料的基础上,通过引入跨层注意力机制充分利用神经网络各层特征信息,训练得到基础翻译模型;随后,利用基础翻译模型,使用回译方法从单语语料生成含噪声的大规模伪平行语料,对两种平行语料进行合并形成组合语料,使其在规模上能够满足变分方法对数据量的需求;最后,为了减少组合语料中的噪声,利用变分信息瓶颈方法在源与目标之间添加中间表征,通过训练使该表征具有放行重要信息、阻止非重要信息流过的能力,从而达到去除噪声的效果.多个数据集上的实验结果表明,本文所提方法能够显著地提高译文质量,是一种适用于低资源场景的半监督神经机器翻译方法. 展开更多
关键词 神经机器翻译 层注意力机制 回译 变分信息瓶颈
在线阅读 下载PDF
基于主题异构图嵌入的Token粒度实体解析方法
11
作者 初慧琳 申德荣 +2 位作者 窦文周 聂铁铮 寇月 《小型微型计算机系统》 CSCD 北大核心 2023年第7期1398-1404,共7页
实体解析是数据集成、数据挖掘等技术中不可或缺的步骤,其具体任务是查找引用自同一真实世界的实体的数据记录.现有的方法多数是通过计算实体记录的属性相似度来评估是否为同一实体,由于该方法需要预先对齐记录属性,无法适应属性中toke... 实体解析是数据集成、数据挖掘等技术中不可或缺的步骤,其具体任务是查找引用自同一真实世界的实体的数据记录.现有的方法多数是通过计算实体记录的属性相似度来评估是否为同一实体,由于该方法需要预先对齐记录属性,无法适应属性中token误放的情形,也不能有效利用跨属性中tokens的语义和结构信息,影响实体识别准确性.本文提出了一种采用主题异构图嵌入的token粒度的实体解析方法(THGE-ER).在token、属性和记录基础上,利用LDA模型为实体记录添加一个主题层级,并构建了一个由token、属性、记录和主题4类节点组成的主题异构图;采用区分节点类型的异构图嵌入表示方法,并将节点间的语义和结构信息嵌入到token层级的嵌入向量中;进一步结合多层次注意力机制,完成最终的实体解析决策.经过大量的实验证明,本文提出的方法表现出了良好的性能. 展开更多
关键词 实体解析 LDA文档主题模型 异构图 层注意力机制
在线阅读 下载PDF
基于拉普拉斯小波滤波和SA-DS-CNN的滚动轴承故障诊断
12
作者 魏亚辉 郭计元 郜帆 《轴承》 北大核心 2023年第2期89-96,共8页
针对基于深度学习模型的滚动轴承故障诊断方法易受环境噪声干扰的问题,提出了一种基于拉普拉斯小波滤波(LWF)和自注意力机制-动态选择-卷积神经网络(SA-DS-CNN)的滚动轴承故障诊断模型。首先,提出一种拉普拉斯小波阻尼参数自适应选取策... 针对基于深度学习模型的滚动轴承故障诊断方法易受环境噪声干扰的问题,提出了一种基于拉普拉斯小波滤波(LWF)和自注意力机制-动态选择-卷积神经网络(SA-DS-CNN)的滚动轴承故障诊断模型。首先,提出一种拉普拉斯小波阻尼参数自适应选取策略,使用拉普拉斯小波对采集的滚动轴承振动信号进行相关滤波并进行功率谱变换;其次,基于卷积神经网络框架,引入自注意力机制和动态选择机制,构造SA-DS-CNN;最后,利用SA-DS-CNN提取功率谱特征,根据轴承的不同故障状态定位相关特征信息,实现故障特征的提取和诊断。对N205EM圆柱滚子轴承的故障诊断试验表明:LWF降噪效果较好,能为SA-DS-CNN模型提供优秀的训练样本;SA-DS-CNN模型能抑制无用通道信息,增强网络特征学习能力;LWF和SA-DS-CNN组合模型的故障诊断准确率达到99.65%,优于其他组合模型。 展开更多
关键词 滚动轴承 故障诊断 卷积神经网络 拉普拉斯小波 动态选择 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部