期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种层次粒度支持向量机算法 被引量:3
1
作者 程凤伟 王文剑 《小型微型计算机系统》 CSCD 北大核心 2015年第8期1799-1802,共4页
支持向量机(Support Vector Machine,SVM)拥有简洁的数学函数,能够非常有效地处理分类和回归问题,SVM具有两大优点:边界最大化和利用核函数解决线性不可分问题.但是由于SVM的训练复杂度依赖于数据集的规模,所以SVM处理大规模数据时能力... 支持向量机(Support Vector Machine,SVM)拥有简洁的数学函数,能够非常有效地处理分类和回归问题,SVM具有两大优点:边界最大化和利用核函数解决线性不可分问题.但是由于SVM的训练复杂度依赖于数据集的规模,所以SVM处理大规模数据时能力非常有限.粒度支持向量机(Granular Support Vector Machine,GSVM)模型可以有效提高SVM的学习效率,但会损失一定的泛化能力.提出一种新的粒度支持向量机学习算法,称为层次粒度支持向量机(Hierarchical Granular Support Vector M achine,HGSVM),通过定义一个新的数据置信度挑选对分类贡献较大的重要信息粒,并在每次的迭代训练中根据粒的重要性进行自动粒划,以获得更好的泛化能力.在UCI标准数据集上的实验结果表明,与传统的粒度支持向量机相比,本文的算法可获得较好的分类性能. 展开更多
关键词 层次粒度支持向量机 置信度 自动粒划 分布
在线阅读 下载PDF
改进的支持向量回归机在电力负荷预测中的应用 被引量:5
2
作者 唐承娥 韦军 《计算机科学》 CSCD 北大核心 2020年第S01期58-65,共8页
电力预测是一项重要的工程应用。为了解决多层次粒度支持向量回归机(Dynamical Granular Support Vector Regression Machine,DGSVRM)预测电力负低荷精度的问题,提出一种基于萤火虫群优化(Glowworm Swarm Optimization,GSO)算法与模式... 电力预测是一项重要的工程应用。为了解决多层次粒度支持向量回归机(Dynamical Granular Support Vector Regression Machine,DGSVRM)预测电力负低荷精度的问题,提出一种基于萤火虫群优化(Glowworm Swarm Optimization,GSO)算法与模式搜索算法(Pattern Search,PS)的混合算法来优化DGSVRM预测模型的关键参数。仿真实验表明,通过优化参数之后,预测模型的预测精度得到很大提高。 展开更多
关键词 层次粒度支持向量回归 萤火虫群优化 模式搜索算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部