期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合层次类型信息的双向图注意力机制的知识图谱嵌入模型 被引量:3
1
作者 翟社平 李方怡 +1 位作者 李航 杨锐 《计算机应用研究》 CSCD 北大核心 2023年第7期2031-2038,共8页
知识图谱嵌入旨在将实体与关系映射到低维且稠密的向量空间中。目前已有的嵌入模型仍存在以下两个方面的缺陷:现有的模型大多只关注知识图谱的语义信息,而忽略了大量三元组的隐藏信息;现有的模型仅关注了实体的单向信息,而忽略了双向的... 知识图谱嵌入旨在将实体与关系映射到低维且稠密的向量空间中。目前已有的嵌入模型仍存在以下两个方面的缺陷:现有的模型大多只关注知识图谱的语义信息,而忽略了大量三元组的隐藏信息;现有的模型仅关注了实体的单向信息,而忽略了双向的潜在信息。针对以上问题,提出了一种融合层次类型信息的双向图注意力机制的知识图谱嵌入模型Bi-HTGAT,该模型设计了层次类型注意力机制,考虑不同关系下每种类型的不同实体对中心实体的贡献。同时引入了关系的方向注意力机制,通过融合不同方向的邻居信息来更新实体和关系嵌入,最终聚合两部分信息以得到实体的最终嵌入。在基准数据集上的实验证明,Bi-HTGAT在链接预测任务上性能明显优于其他基线模型,充分证明了Bi-HTGAT能够进一步提高嵌入结果的精准度。 展开更多
关键词 知识图谱嵌入 图注意力机制 层次类型信息 链接预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部