期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于图增强和图神经网络的层次社区发现方法 被引量:1
1
作者 杨慎 陈磊 周绮凤 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期209-220,共12页
[目的]现有的多分辨率层次社区发现方法需要搜索分辨率参数得到特定层次的社区划分,且无法利用网络拓扑与节点属性之间的关联获取社区结构信息.为解决这些限制,本文提出一种基于图增强和图神经网络的层次社区发现方法HCEG.[方法]首先在... [目的]现有的多分辨率层次社区发现方法需要搜索分辨率参数得到特定层次的社区划分,且无法利用网络拓扑与节点属性之间的关联获取社区结构信息.为解决这些限制,本文提出一种基于图增强和图神经网络的层次社区发现方法HCEG.[方法]首先在图增强过程中对原始网络进行重构,使得构建的初始社区种子能涵括节点属性和拓扑信息,然后对初始种子社区集进行合并,再采用基于图神经网络的方法进行拓展,以搜寻网络中不同层次的社区划分.[结果]与其他SOTA方法相比,所提出的HCEG方法可以准确地找到不同类型真实网络中的分层社区结构,并可在不同规模的真实网络中可以获得良好的社区发现性能.[结论]在社交网络、引文网络、网页超链接网络等真实数据集上的一系列实验,验证了HCEG方法的可行性和有效性. 展开更多
关键词 层次社区发现 图神经网络 变分图自编码器 属性网络
在线阅读 下载PDF
加权模块度增量引导下的层次社区发现算法 被引量:3
2
作者 张霄宏 郝浩宇 +1 位作者 任杰成 王海涛 《小型微型计算机系统》 CSCD 北大核心 2023年第7期1479-1485,共7页
模块度优化层次社区发现算法可以快速挖掘网络中不同密度的社区,对研究网络的功能和演化机制具有重要意义.然而,由于在迭代过程中仅合并模块度增量最大的社区,其收敛速度受到了制约;此外,在社区合并过程中过度强调社区之间的连接强度而... 模块度优化层次社区发现算法可以快速挖掘网络中不同密度的社区,对研究网络的功能和演化机制具有重要意义.然而,由于在迭代过程中仅合并模块度增量最大的社区,其收敛速度受到了制约;此外,在社区合并过程中过度强调社区之间的连接强度而忽略了社区之间的相似性,其划分结果的准确度也受到了制约.针对以上问题,提出了加权模块度增量引导下的层次社区发现算法.该算法引入了社区相似度权重,并结合模块度增量构建加权模块度增量,通过优化加权模块度增量划分层次社区;同时,在社区划分过程中引入可调合并阈值,动态调整每轮迭代中合并的社区数量,以优化算法的收敛速度.在不同规模的真实数据集和人工数据集上的实验结果验证了本文方法的正确性和有效性. 展开更多
关键词 复杂网络 层次社区发现 模块度 加权模块度增量 可调合并阈值
在线阅读 下载PDF
基于概率主题模型的社交网络层次化社区发现算法 被引量:6
3
作者 毕娟 秦志光 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第6期898-903,共6页
针对传统的社区发现算法大多基于网络拓扑结构寻找独立的社区结构,忽略了用户兴趣属性,并且不能有效地发现社区间的相关性和层次关系等问题。该文提出一种新型的基于PAM(pachinko allocation model)概率主题模型的层次化网络社区发现算... 针对传统的社区发现算法大多基于网络拓扑结构寻找独立的社区结构,忽略了用户兴趣属性,并且不能有效地发现社区间的相关性和层次关系等问题。该文提出一种新型的基于PAM(pachinko allocation model)概率主题模型的层次化网络社区发现算法,综合考虑了用户的兴趣和用户的社交网络关系,在同一模型平台上实现层次化的社区结构发现和用户兴趣挖掘,并捕捉和揭示社区之间的关联性和重叠性等特征。模型采用Gibbs采样方法进行参数推导。在真实数据集上的实验结果验证了所提出算法的可行性和有效性。 展开更多
关键词 层次社区发现 LDA 概率生成模型 社交网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部