Hollow multi-shelled structure(HoMS)is the novel multifunctional structural system,which are con-structed with nanoparticles as structural units,featuring two or more shells,multiple interfaces,and numerous chan-nels ...Hollow multi-shelled structure(HoMS)is the novel multifunctional structural system,which are con-structed with nanoparticles as structural units,featuring two or more shells,multiple interfaces,and numerous chan-nels and demonstrating outstanding properties in energy conversion and mass transfer.In recent years,owing to the breakthroughs in synthetic methods,the diversity of composition and structure of HoMS has been greatly enriched,showing broad application prospects in energy,catalysis,environment and other fields.This review focuses on the research status of HoMS for catalytic applications.Firstly,the new synthesis method for HoMS,namely the sequen-tial templating approach,is introduced from both practical and theoretical perspectives.Then,it summarizes and discusses the structure-performance relationship between the shell structure and catalytic performance.The unique temporal-spatial ordering property of mass transport in HoMS and the major breakthroughs it brings in catalytic applications are discussed.Finally,it looks forward to the opportunities and challenges in the development of HoMS.展开更多
The hierarchical BiOCl_(x)Br_(1–x)was synthesized by a simple solvothermal method.The samples were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),UV-visible diffuse reflect...The hierarchical BiOCl_(x)Br_(1–x)was synthesized by a simple solvothermal method.The samples were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),UV-visible diffuse reflectance spectroscopy(UV-vis DRS)and Brunauer-Emmett-Teller adsorption method.Compared to pure BiOCl or BiOBr,the BiOCl_(x)Br_(1–x)solid solution has enhanced photocatalytic degradation activity for rhodamine B.This phenomenon can be explained to the hierarchical structure,lager specific surface area and appropriate energy gap of the obtained BiOCl_(x)Br_(1–x)solid solution.The renewability and stability of photocatalyst were determinated and a possible mechanism of photocatalytic degradation was also proposed.展开更多
A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the d...A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.展开更多
文摘Hollow multi-shelled structure(HoMS)is the novel multifunctional structural system,which are con-structed with nanoparticles as structural units,featuring two or more shells,multiple interfaces,and numerous chan-nels and demonstrating outstanding properties in energy conversion and mass transfer.In recent years,owing to the breakthroughs in synthetic methods,the diversity of composition and structure of HoMS has been greatly enriched,showing broad application prospects in energy,catalysis,environment and other fields.This review focuses on the research status of HoMS for catalytic applications.Firstly,the new synthesis method for HoMS,namely the sequen-tial templating approach,is introduced from both practical and theoretical perspectives.Then,it summarizes and discusses the structure-performance relationship between the shell structure and catalytic performance.The unique temporal-spatial ordering property of mass transport in HoMS and the major breakthroughs it brings in catalytic applications are discussed.Finally,it looks forward to the opportunities and challenges in the development of HoMS.
基金Project(2016TP1007)supported by the Hunan Provincial Science and Technology Plan Project,China
文摘The hierarchical BiOCl_(x)Br_(1–x)was synthesized by a simple solvothermal method.The samples were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),UV-visible diffuse reflectance spectroscopy(UV-vis DRS)and Brunauer-Emmett-Teller adsorption method.Compared to pure BiOCl or BiOBr,the BiOCl_(x)Br_(1–x)solid solution has enhanced photocatalytic degradation activity for rhodamine B.This phenomenon can be explained to the hierarchical structure,lager specific surface area and appropriate energy gap of the obtained BiOCl_(x)Br_(1–x)solid solution.The renewability and stability of photocatalyst were determinated and a possible mechanism of photocatalytic degradation was also proposed.
基金Project(51275205)supported by the National Natural Science Foundation of China
文摘A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.