期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于多层长短期记忆神经网络的用水量预测 被引量:6
1
作者 王健 刘丽 +1 位作者 查淳膺 陈国炜 《水电能源科学》 北大核心 2023年第12期24-27,共4页
及时准确的居民用水量预测对供水系统的设计和运行管理至关重要。长短期记忆神经网络(LSTM)是一种有效的基于数据驱动的用水量预测模型,但其通常依赖于大量的参数设置。因此,在LSTM模型基础上,通过叠加时间分布模块,提出多层长短期记忆... 及时准确的居民用水量预测对供水系统的设计和运行管理至关重要。长短期记忆神经网络(LSTM)是一种有效的基于数据驱动的用水量预测模型,但其通常依赖于大量的参数设置。因此,在LSTM模型基础上,通过叠加时间分布模块,提出多层长短期记忆神经网络模型(MLSTM)。与LSTM模型对比分析表明,MLSTM模型具有较低复杂度和更高的预测精度,尤其对于高峰期用水量预测(M_(MAPE)值降低约60%),且受外部环境条件(如天气)的影响较小。 展开更多
关键词 居民用水量 长短期记忆神经网络 时间分布模块 长短期记忆神经网络 预测精度
在线阅读 下载PDF
基于自注意力层的神经网络弹道落点预测方法
2
作者 马月红 曹彦敏 +5 位作者 李超旺 赵辰 周辉 赵慧亮 王晓成 李乾 《弹箭与制导学报》 北大核心 2025年第1期53-61,共9页
针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序... 针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序列时动态关注不同时刻信息的能力,缓解网络中的梯度爆炸问题。采用多维时间序列数据的输入表示方法,结合历史弹道轨迹数据和目标特征等信息,减小弹道落点预测误差。仿真结果表明,基于自注意力层的CNN-BiLSTM-BiGRU网络模型的预测效果优于其他模型,射程预测的最大误差占真实值的0.156%,横偏预测的最大误差占真实值的5.904%。文中研究为弹道落点预测领域提供了重要的参考依据。 展开更多
关键词 弹道落点预测 深度学习 弹道模型 自注意力 卷积神经网络 长短期记忆网络 门控循环神经网络
在线阅读 下载PDF
基于深度学习长短期记忆神经网络的有色金属期货市场预测研究 被引量:9
3
作者 沈虹 李旭 潘琪 《南京理工大学学报》 CAS CSCD 北大核心 2021年第3期366-374,共9页
为提高金融资产预测能力,该文采用深度学习长短期记忆(LSTM)神经网络模型对上海期货交易所(SHFE)和伦敦金属期货交易所(LME)的铝、铜、镍、铅、锡和锌6种有色金属期货价格分别进行长、短期预测,与传统机器学习多层感知器(MLP)模型以及... 为提高金融资产预测能力,该文采用深度学习长短期记忆(LSTM)神经网络模型对上海期货交易所(SHFE)和伦敦金属期货交易所(LME)的铝、铜、镍、铅、锡和锌6种有色金属期货价格分别进行长、短期预测,与传统机器学习多层感知器(MLP)模型以及线性自回归移动平均(ARIMA)模型进行对比研究。数据源于Wind数据库和国际货币基金组织(IMF)数据库。使用Python深度学习软件模拟预测有色金属期货价格,结果显示:有色金属期货市场长期预测中,LSTM模型的预测表现略逊于ARIMA模型,MLP模型预测效果不理想;短期预测中,LSTM模型的预测结果和ARIMA模型相近,均优于MLP模型;LSTM模型与MLP模型相比,模型的稳定性和预测的精确度都更加出色。LSTM模型可作为ARIMA模型的最优替代之一。 展开更多
关键词 深度学习 长短期记忆模型 神经网络 感知器模型 自回归移动平均模型 有色金属 期货市场 价格预测
在线阅读 下载PDF
基于GA-LSTM神经网络的充电桩故障诊断
4
作者 周锦 高天 +2 位作者 王强 殷张程 朱金荣 《现代电子技术》 北大核心 2025年第16期97-104,共8页
电动汽车充电设施的充电数据包括电压、电流、温度、功率等时序数据,这些数据具有前一时刻影响关联下一时刻的特点。利用长短期记忆(LSTM)神经网络挖掘数据量中的关联特征,建立工作数据与故障之间的特征模型,可以进行充电桩故障诊断。但... 电动汽车充电设施的充电数据包括电压、电流、温度、功率等时序数据,这些数据具有前一时刻影响关联下一时刻的特点。利用长短期记忆(LSTM)神经网络挖掘数据量中的关联特征,建立工作数据与故障之间的特征模型,可以进行充电桩故障诊断。但LSTM神经网络存在过拟合和易陷入局部最优解的问题,为此,提出一种遗传算法(GA)优化LSTM神经网络的充电桩故障诊断方法。使用遗传算法,通过模拟生物进化过程来搜索最优解,选择适应度高的个体进行繁殖,并引入变异操作逐步优化超参数组合,提高LSTM模型的性能与效率。经与LSTM神经网络的实验结果对比,GA-LSTM神经网络数据预测结果的RMSE值降低56.7%,MPAE值降低60.3%,故障诊断的准确率提升3.2%。因此,GA-LSTM神经网络可以作为一种深度学习技术应用于充电桩故障诊断。 展开更多
关键词 充电桩 数据预测 故障诊断 遗传算法 长短期记忆神经网络 归一化处理
在线阅读 下载PDF
基于多通道双向长短期记忆网络的情感分析 被引量:18
5
作者 李卫疆 漆芳 《中文信息学报》 CSCD 北大核心 2019年第12期119-128,共10页
当前存在着大量的语言知识和情感资源,但在基于深度学习的情感分析研究中,这些特有的情感信息,没有在情感分析任务中得到充分利用。针对以上问题,该文提出了一种基于多通道双向长短期记忆网络的情感分析模型(multi-channels bidirection... 当前存在着大量的语言知识和情感资源,但在基于深度学习的情感分析研究中,这些特有的情感信息,没有在情感分析任务中得到充分利用。针对以上问题,该文提出了一种基于多通道双向长短期记忆网络的情感分析模型(multi-channels bidirectional long short term memory network,Multi-Bi-LSTM),该模型对情感分析任务中现有的语言知识和情感资源进行建模,生成不同的特征通道,让模型充分学习句子中的情感信息。与CNN相比,该模型使用的Bi-LSTM考虑了词序列之间依赖关系,能够捕捉句子的上下文语义信息,使模型获得更多的情感信息。最后在中文COAE2014数据集、英文MR数据集和SST数据集进行实验,取得了比普通Bi-LSTM、结合情感序列特征的卷积神经网络以及传统分类器更好的性能。 展开更多
关键词 情感分析 长短期记忆 多通道 归一化
在线阅读 下载PDF
基于LSTM循环神经网络的故障时间序列预测 被引量:397
6
作者 王鑫 吴际 +3 位作者 刘超 杨海燕 杜艳丽 牛文生 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第4期772-784,共13页
有效地预测使用阶段的故障数据对于合理制定可靠性计划以及开展可靠性维护活动等具有重要的指导意义。从复杂系统的历史故障数据出发,提出了一种基于长短期记忆(LSTM)循环神经网络的故障时间序列预测方法,包括网络结构设计、网络训练和... 有效地预测使用阶段的故障数据对于合理制定可靠性计划以及开展可靠性维护活动等具有重要的指导意义。从复杂系统的历史故障数据出发,提出了一种基于长短期记忆(LSTM)循环神经网络的故障时间序列预测方法,包括网络结构设计、网络训练和预测过程实现算法等,进一步以预测误差最小为目标,提出了一种基于多层网格搜索的LSTM预测模型参数优选算法,通过与多种典型时间序列预测模型的实验对比,验证了所提出的LSTM预测模型及其参数优选算法在故障时间序列分析中具有很强的适用性和更高的准确性。 展开更多
关键词 长短期记忆(LSTM)模型 循环神经网络 故障时间序列预测 网格搜索 深度学习
在线阅读 下载PDF
基于深度神经网络的煤矿瓦斯浓度序列预测算法 被引量:4
7
作者 李旭 赖祥威 +5 位作者 曹继翔 张凌寒 周向东 郑万波 夏云霓 崔俊飞 《计算机应用》 CSCD 北大核心 2022年第S02期315-319,共5页
针对统计学习和机器学习方法难以对瓦斯浓度序列数据准确预测的问题,提出一种基于长短期记忆(LSTM)-门控循环单元(GRU)神经网络的瓦斯浓度序列预测算法。首先对数据进行划分和归一化;接着引入LSTM神经网络细胞和GRU神经网络细胞处理具... 针对统计学习和机器学习方法难以对瓦斯浓度序列数据准确预测的问题,提出一种基于长短期记忆(LSTM)-门控循环单元(GRU)神经网络的瓦斯浓度序列预测算法。首先对数据进行划分和归一化;接着引入LSTM神经网络细胞和GRU神经网络细胞处理具有时序性的历史瓦斯浓度序列数据,设计网络结构学习瓦斯浓度序列内部动态变化规律,以误差损失最小化为目标,得到预测方法完成瓦斯浓度预测。以吉林八连城瓦斯浓度监控数据为实例,采用所提算法进行瓦斯预测,并与单一LSTM神经网络、GRU神经网络和多层感知机(MLP)进行对比。实验结果表明,对于一年(长期)南11902上顺工作面的训练集和测试集,所提算法较MLP的均方根误差(RMSE)分别降低了4.227%和3.559%;对于一年(长期)72305上顺回风的训练集和测试集,所提算法较MLP的均方根误差分别降低了7.846%和10.323%,均表现出更高的预测精度。 展开更多
关键词 瓦斯预测 长短期记忆网络 门控循环单元 感知机 神经网络
在线阅读 下载PDF
LSTM与Informer融合预测冠层区域温度
8
作者 黄铝文 刘宇航 +1 位作者 屈昆仪 朱玉颖 《农业工程学报》 北大核心 2025年第8期222-232,共11页
针对传统温度预测方法难以充分捕捉多尺度信息,导致模型预测性能不佳等问题,该研究提出了一种基于Informer架构和长短时记忆网络(long short-term memory,LSTM)与多源数据融合的冠层区域温度预测模型。在编码层中,采用稀疏注意力机制提... 针对传统温度预测方法难以充分捕捉多尺度信息,导致模型预测性能不佳等问题,该研究提出了一种基于Informer架构和长短时记忆网络(long short-term memory,LSTM)与多源数据融合的冠层区域温度预测模型。在编码层中,采用稀疏注意力机制提取输入因子的多尺度信息及其与长时序数据之间的耦合关系;在解码层中,利用LSTM提取短期时序依赖,以增强时间序列的连贯性,同时引入改进的反向残差前馈网络(improved residual feedforward network,IRFFN)以优化模型结构。首先采用孤立森林法对数据进行异常值清理,并进行了归一化处理;然后使用斯皮尔曼相关系数法对冠层区域温度进行相关性分析,并选择相关程度较高的环境因子作为模型的输入特征;最终通过网格搜索法对超参数进行优化,并通过迭代训练实现模型的最优配置。通过与其他4种主流算法进行对比分析,提出的InformerLSTM在冠层区域温度预测方面表现出更高的精度,其平均绝对误差(mean absolute error,MAE)、均方根误差(root mean square error,RMSE)和决定系数(R^(2))分别达到了0.166、0.224℃和0.978,与基础模型Informer相比,冠层区域温度的均方根误差降低了0.448℃。该模型在时间序列预测方面具有较高的精度,为区域气象温度的中短期精准预测提供了一种新的技术方法。 展开更多
关键词 温度 非线性时间序列 长短期记忆神经网络 INFORMER
在线阅读 下载PDF
基于CNN-LSTM风光荷预测的主动配电网双层扩展规划方法 被引量:3
9
作者 朱夏 陈颂 +1 位作者 袁明瀚 刘扬洋 《高压电器》 北大核心 2025年第5期218-227,共10页
随着大量可再生能源接入配电网,由于其出力的不确定性,需要对配电网进行扩展规划。为此,首先提出一种基于卷积神经网络与长短期记忆网络方法预测风光荷出力,然后构建主动配电网双层扩展规划模型。上层规划模型,以年综合成本最低为优化目... 随着大量可再生能源接入配电网,由于其出力的不确定性,需要对配电网进行扩展规划。为此,首先提出一种基于卷积神经网络与长短期记忆网络方法预测风光荷出力,然后构建主动配电网双层扩展规划模型。上层规划模型,以年综合成本最低为优化目标,同时考虑线路的改造升级与各项成本。下层运行模型,以年综合运行成本最低与节点电压偏移量最小为优化目标,考虑运行状况、分布式电源与储能的规划。在经过上下层关联建模后,将双层模型转化为多目标优化问题,然后采用归一化法向约束法进行求解,以获得分布均匀的帕累托前沿,最后通过算例验证了方法的有效性。 展开更多
关键词 主动配电网 卷积神经网络 长短期记忆网络 规划模型 归一化法向约束法
在线阅读 下载PDF
融合多层注意力机制与CNN-LSTM的反向散射信道预测
10
作者 徐双 文永新 +3 位作者 刘文斌 李佳龙 李灯熬 赵菊敏 《小型微型计算机系统》 CSCD 北大核心 2024年第9期2278-2284,共7页
反向散射通信系统频谱资源十分有限且易受链路突变性影响,信道预测是提高其频谱资源利用率和通信质量的一种有效方法.但大多数现有预测方法的预测精度偏低、依赖完全已知的信道状态信息、适用性受限.为此,本文提出了一种融合多层注意力... 反向散射通信系统频谱资源十分有限且易受链路突变性影响,信道预测是提高其频谱资源利用率和通信质量的一种有效方法.但大多数现有预测方法的预测精度偏低、依赖完全已知的信道状态信息、适用性受限.为此,本文提出了一种融合多层注意力机制与卷积神经网络-长短期记忆网络(Convolutional Neural Networks-Long Short-Term Memory,CNN-LSTM)的信道预测方法.利用CNN模型与注意力机制提取接收信号强度序列的特征,并进一步使用LSTM模型与注意力机制提取其跨时间步长的特征,从而实现对信道指标的预测.最后,借助商用阅读器与标签采集3种不同场景下的信道状态数据,并基于Tensorflow与Keras验证了所提预测方法性能.结果表明,融合多层注意力机制与CNN-LSTM的信道预测方法具有较强的场景适用性,且其预测准确性较高. 展开更多
关键词 反向散射通信 信道预测 卷积神经网络 长短期记忆网络 注意力机制
在线阅读 下载PDF
基于分布式优化思想的配电网用电负荷多层协同预测方法 被引量:23
11
作者 谭嘉 李知艺 +2 位作者 杨欢 赵荣祥 鞠平 《上海交通大学学报》 EI CAS CSCD 北大核心 2021年第12期1544-1553,共10页
当前,分布式新能源、电动汽车等新元素在配电网中涌现,改变了负荷的构成,丰富了负荷的内涵,给负荷预测带来了严峻挑战.事实上,用电负荷在配电网的多个电压层级以自下而上的方式聚合,但现有预测研究鲜少考虑此类层级化特征.为保障负荷自... 当前,分布式新能源、电动汽车等新元素在配电网中涌现,改变了负荷的构成,丰富了负荷的内涵,给负荷预测带来了严峻挑战.事实上,用电负荷在配电网的多个电压层级以自下而上的方式聚合,但现有预测研究鲜少考虑此类层级化特征.为保障负荷自下而上的聚合一致性并且联合提升各层级的负荷预测性能,提出了一种基于分布式优化算法的用电负荷多层协同预测方法.首先,采用基于交替方向乘子法的分布式优化理念,构建了适配配电网层级特征、数据交互量少的多层协同预测框架.随后,提出了基于长短期记忆神经网络和联邦学习的具体预测方法,通过将底层负荷预测结果逐级聚合,能实现自下而上的配电网负荷一体化预测.算例结果表明,所提方法得到的用电负荷预测准确度高,应用前景好. 展开更多
关键词 负荷预测 交替方向乘子法 长短期记忆神经网络 联邦学习
在线阅读 下载PDF
基于BiLSTM的地质片段层位预测方法 被引量:3
12
作者 金相臣 吴子锐 +2 位作者 石敏 朱登明 周军 《高技术通讯》 CAS 2021年第6期607-614,共8页
地质分层是指对某一个地区的地层剖面中的岩层进行划分,可用于指导相应的地质找矿工作。传统的地质分层主要依靠专家根据经验进行人工判断,然而由于地质层位类别繁多,需要消耗大量的时间和人力成本。现有的地质层位自动识别方法,由于没... 地质分层是指对某一个地区的地层剖面中的岩层进行划分,可用于指导相应的地质找矿工作。传统的地质分层主要依靠专家根据经验进行人工判断,然而由于地质层位类别繁多,需要消耗大量的时间和人力成本。现有的地质层位自动识别方法,由于没能考虑到测井数据的序列关系以及地质层位分布的特点,导致识别效果较差。基于此,本文提出了一种改进的双向长短期记忆神经网络(BiLSTM)的地质片段层位预测方法,可以根据测井数据自动快速地进行地质分层预测。该方法首先对测井数据进行分段处理,然后基于片段式的数据对BiLSTM网络进行相应的修改,其充分利用了地质层位片段式分布的特点,且考虑到了测井数据两个方向上的序列相关性。实验结果表明,本文方法在某油田真实井位数据集上的识别准确率达到了93%,相较于其他网络有着显著的效果提升。 展开更多
关键词 双向长短期记忆神经网络(BiLSTM) 测井曲线 地质分 位预测
在线阅读 下载PDF
基于变分模态分解与集成深度模型的锂电池剩余寿命预测方法 被引量:34
13
作者 王冉 后麒麟 +2 位作者 石如玉 周雁翔 胡雄 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第4期111-120,共10页
锂电池剩余寿命(RUL)预测对于锂电池安全使用至关重要。由于锂电池使用过程中存在容量再生现象和随机干扰等因素,导致单一尺度信号下单一模型的预测精度及泛化性能较差。针对上述问题,提出一种新的基于变分模态分解(VMD)与集成深度模型... 锂电池剩余寿命(RUL)预测对于锂电池安全使用至关重要。由于锂电池使用过程中存在容量再生现象和随机干扰等因素,导致单一尺度信号下单一模型的预测精度及泛化性能较差。针对上述问题,提出一种新的基于变分模态分解(VMD)与集成深度模型的锂电池剩余寿命预测方法。首先,采用变分模态分解将锂电池容量数据进行多尺度分解,得到信号的全局退化趋势和局部随机波动分量;然后,分别采用多层感知机(MLP)和长短期记忆神经网络(LSTM)对全局退化趋势和各波动分量进行建模;最后,将各个分量子模型的预测结果进行集成,获得最终的锂电池剩余寿命预测结果。实验结果表明,该方法具有较高的预测精度与稳定性。 展开更多
关键词 锂电池剩余寿命预测 变分模态分解 长短期记忆神经网络 感知机 集成深度模型
在线阅读 下载PDF
基于CNN/LSTM和稀疏下采样的人体行为识别 被引量:10
14
作者 陈煜平 邱卫根 《计算机工程与设计》 北大核心 2019年第5期1445-1450,共6页
针对人体行为识别提出一种基于深度学习的方法,使用CNN和LSTM以及MLP来构建的模型。用CNN提取视频的空间信息,LSTM提取视频的时间信息,使用MLP实现最后的分类,为提高训练速度,对视频剪辑进行稀疏下采样预处理。该模型在UCF-101数据集上... 针对人体行为识别提出一种基于深度学习的方法,使用CNN和LSTM以及MLP来构建的模型。用CNN提取视频的空间信息,LSTM提取视频的时间信息,使用MLP实现最后的分类,为提高训练速度,对视频剪辑进行稀疏下采样预处理。该模型在UCF-101数据集上达到了令人满意的效果,在与该领域中的同类算法比较中表现优异。 展开更多
关键词 人体行为识别 卷积神经网络 长短期记忆网络 感知器 稀疏下采样
在线阅读 下载PDF
结合自注意力和残差的BiLSTM_CNN文本分类模型 被引量:21
15
作者 杨兴锐 赵寿为 +2 位作者 张如学 杨兴俊 陶叶辉 《计算机工程与应用》 CSCD 北大核心 2022年第3期172-180,共9页
双向长短期记忆网络(BiLSTM)和卷积神经网络(CNN)很难在文本的多分类任务中提取到足够的文本信息。提出了一种基于自注意力机制(self_attention)和残差网络(ResNet)的BiLSTM_CNN复合模型。通过自注意力赋予卷积运算后信息的权重,接着将... 双向长短期记忆网络(BiLSTM)和卷积神经网络(CNN)很难在文本的多分类任务中提取到足够的文本信息。提出了一种基于自注意力机制(self_attention)和残差网络(ResNet)的BiLSTM_CNN复合模型。通过自注意力赋予卷积运算后信息的权重,接着将池化后的特征信息层归一化并接入残差网络,让模型学习到残差信息,从而进一步提高模型的分类性能。在模型的运算过程中,使用了更加光滑的Mish非线性激活函数代替Relu。通过与深度学习模型对比,所提出的方法在准确率以及F1值评价指标上均优于现有模型,为文本分类问题提供了新的研究思路。 展开更多
关键词 自注意力机制 双向长短期记忆网络 残差网络 卷积神经网络 归一化
在线阅读 下载PDF
一种基于CNN与LSTM结合的微表情识别算法 被引量:6
16
作者 吴进 闵育 +1 位作者 马思敏 张伟华 《电讯技术》 北大核心 2020年第1期1-7,共7页
微表情表现强度微弱且非常短暂。针对微表情识别效果不理想的问题,以视觉几何组(Visual Geometry Group,VGG)网络为基础,提出卷积神经网络(Convolutionnal Neural Network,CNN)与长短期记忆网络(Long Short-Term Memory,LSTM)结合的识... 微表情表现强度微弱且非常短暂。针对微表情识别效果不理想的问题,以视觉几何组(Visual Geometry Group,VGG)网络为基础,提出卷积神经网络(Convolutionnal Neural Network,CNN)与长短期记忆网络(Long Short-Term Memory,LSTM)结合的识别算法。CNN提取数据集CASME II的空域特征,LSTM处理时域特征,实现空域与时域特征的结合。针对深度学习训练困难以及过拟合问题,加入批量归一化算法与丢弃法,提高网络训练速度,有效防止过拟合。针对数据集稀缺的问题,固定每次读取帧序列的长度,随机生成起始帧的位置,不断循环读取以遍历整个数据集并达到数据扩增。根据实验结果,五类微表情(高兴、惊讶、厌恶、抑郁、其他)识别率最高可达72.3%。 展开更多
关键词 微表情识别 深度学习 卷积神经网络 长短期记忆网络 批量归一化算法 丢弃法
在线阅读 下载PDF
基于TabNet-LN-LSTM协同预测与粒子群优化的双有源桥变换器电流应力优化方法
17
作者 蔡久青 雷伟昊 +1 位作者 张欣 倪康 《电气工程学报》 2025年第5期35-44,共10页
双有源桥变换器因其优异的功率密度和双向功率传输能力,在众多工业应用中得到广泛关注。随着电力电子设备对能效和可靠性要求的不断提高,双有源桥变换器的电流应力已成为衡量其性能的关键指标之一。过大的电流应力不仅会导致功率器件损... 双有源桥变换器因其优异的功率密度和双向功率传输能力,在众多工业应用中得到广泛关注。随着电力电子设备对能效和可靠性要求的不断提高,双有源桥变换器的电流应力已成为衡量其性能的关键指标之一。过大的电流应力不仅会导致功率器件损耗增加,系统效率下降,还会影响变换器的可靠性和使用寿命。针对上述问题,提出了一种基于TabNet-LN-LSTM协同预测与粒子群优化的电流应力优化方法。该方法通过利用TabNet和层归一化长短期记忆神经网络(Long-short term memory neural network with layer normalization,LN-LSTM)协同构建电感电流时序预测模型,并结合粒子群优化算法对双有源桥变换器在不同运行工况下的电流应力进行优化。通过算法试验和硬件试验证明,所提方法不仅能够精确预测电感电流波形,其预测波形与硬件实测波形相比,其平均绝对误差仅为0.3525,决定系数高达97.17%;同时,能够有效降低双有源桥变换器的电流应力,进一步提升系统的整体效能和可靠性。 展开更多
关键词 双有源桥变换器 电流应力优化 TabNet 层归一化长短期记忆神经网络 时序波形预测 粒子群算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部