期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
局部-全局特征相互补偿的伪装目标检测方法
1
作者 何文昊 葛海波 《计算机科学与探索》 北大核心 2025年第2期454-464,共11页
在伪装目标检测(COD)领域中,最新提出的方法主要利用伪装目标的局部特征完成COD任务,输出的预测图存在目标轮廓粗糙和对象不完整的问题。针对上述问题,提出了基于局部-全局特征相互补偿的伪装目标检测方法,利用局部特征与全局特征相互... 在伪装目标检测(COD)领域中,最新提出的方法主要利用伪装目标的局部特征完成COD任务,输出的预测图存在目标轮廓粗糙和对象不完整的问题。针对上述问题,提出了基于局部-全局特征相互补偿的伪装目标检测方法,利用局部特征与全局特征相互补偿进行伪装目标的检测。设计一个非局部特征增强模块(N-LFEM),使用非局部机制来交互相邻局部区域,增强局部特征表达。构建一个局部-全局特征交互模块(L-GFIM),平均局部特征得到全局特征,执行局部特征与全局特征的相互补偿。设计一个局部-全局特征交叉协方差模块(L-GFCCM),通过语义对齐和交叉协方差获取空间指标定位伪装目标所在区域,选取相似性最高的特征图输出。在3个公开数据集上的实验表明,该算法优于其他8个最新模型。在COD10K数据集上,平均绝对误差(MAE)达到了0.028。 展开更多
关键词 伪装目标检测 局部-全局特征相互补偿 局部-全局特征交叉协方差
在线阅读 下载PDF
局部-全局特征引导的图文多级关系分析与挖掘方法
2
作者 王海荣 郭瑞萍 +1 位作者 徐玺 周北京 《燕山大学学报》 CAS 北大核心 2024年第5期446-455,共10页
具有语义相关性的文本、图像数据往往具有互补性,可以从不同角度增强语义理解,因此,图文语义关系挖掘是图文数据得以充分利用的关键。为解决图文数据深层语义关系挖掘不充分、检索阶段预测不精准的问题,本文提出了一种局部-全局特征引... 具有语义相关性的文本、图像数据往往具有互补性,可以从不同角度增强语义理解,因此,图文语义关系挖掘是图文数据得以充分利用的关键。为解决图文数据深层语义关系挖掘不充分、检索阶段预测不精准的问题,本文提出了一种局部-全局特征引导的多级关系分析与挖掘方法。采用多头自注意力机制的Transformer建模图像关系,构建图像引导的文本注意力模块,挖掘图像区域和全局文本间的细粒度关系,融合局部-全局特征有效增强图文数据的语义关系。为验证本文方法,在Flickr30K、MSCOCO-1K和MSCOCO-3K数据集上进行实验,并与VSM、SGRAF等13种方法进行对比分析,本文方法中以文索图的召回率平均提升了0.62%,以图索文的召回率平均提高了0.5%,实验结果验证了本文方法的有效性。 展开更多
关键词 图文关系挖掘 多头自注意力机制 局部-全局特征
在线阅读 下载PDF
全局-局部特征融合的甲状腺细针穿刺活检全玻片图像轻量化样本级分类
3
作者 高俊涛 张菁 +1 位作者 孙萌 卓力 《电子测量与仪器学报》 北大核心 2025年第3期159-168,共10页
细针穿刺活检全玻片图像(FNAB-WSI)的细胞学检查对甲状腺乳头状癌或良性结节性增生的诊断至关重要。由于样本级FNAB-WSI具有上亿像素的超高分辨率,利用深度网络进行样本级别分类会消耗相当规模的计算资源。考虑到样本级FNAB-WSI兼具全... 细针穿刺活检全玻片图像(FNAB-WSI)的细胞学检查对甲状腺乳头状癌或良性结节性增生的诊断至关重要。由于样本级FNAB-WSI具有上亿像素的超高分辨率,利用深度网络进行样本级别分类会消耗相当规模的计算资源。考虑到样本级FNAB-WSI兼具全局和细胞团局部细节特征,提出了一种全局-局部特征融合的轻量化样本级分类方法。首先利用轻量化GhostNet网络提取全局特征,通过设置卷积步长控制特征图谱尺寸,并用特征切片与融合获取局部特征;然后对全局和局部特征分别最大池化和降维,进而融合为全局-局部特征;最后全连接全局-局部特征,并通过softmax分类器达成甲状腺样本级良恶性分类。在自建的FNAB-WSI样本级数据集上,方法的各项性能指标上均超越了其他轻量化方法,精度、召回率、准确率和AUC分别达到了最高的89.9%、91.2%、91.7%和92.5%,同时参数量方面具有可比性,为6.1×106,展现出了良好的平衡性能。方法不仅提高了样本级分类的准确性,还通过减少参数量优化了模型的计算效率,有望为甲状腺癌的临床诊断提供了一种有效的辅助工具。 展开更多
关键词 深度学习 全玻片图像 样本级分类 轻量化 全局-局部特征融合
在线阅读 下载PDF
基于Transformer全局-局部特征融合的RGB-D显著性检测
4
作者 宋梦柯 王芸 郑元超 《计算机应用与软件》 北大核心 2025年第3期176-182,共7页
现有的RGB-D方法一般通过局部操作分别应用多尺度和多模态融合,但这无法捕获远程依赖性,因此对特征整体表征能力不足。针对此问题,提出一种全局-局部特征融合网络。在低层特征提取阶段,将两个分支特征直接融合;在高层特征提取阶段,将融... 现有的RGB-D方法一般通过局部操作分别应用多尺度和多模态融合,但这无法捕获远程依赖性,因此对特征整体表征能力不足。针对此问题,提出一种全局-局部特征融合网络。在低层特征提取阶段,将两个分支特征直接融合;在高层特征提取阶段,将融合后特征送入Transformer编码器通过在所有位置同时整合多尺度和多模态的特征来进行充分的特征融合,获得全局特征依赖关系之后再送入主干网络提取全局—局部融合特征。同时提出双重注意力模块,用来增强两个分支特征的融合效果。在五个公开数据集上进行的实验表明,该网络在三个评价指标上均取得了较好的表现。 展开更多
关键词 RGB-D显著性检测 全局-局部特征 跨模态融合 多尺度 TRANSFORMER
在线阅读 下载PDF
全局-局部特征融合的人体姿态估计算法
5
作者 毛琳 任春贺 杨大伟 《电子测量技术》 北大核心 2024年第10期115-125,共11页
针对现有人体姿态估计算法存在因骨干网络特征提取不充分,导致关键点特征信息丢失的问题,提出一种结合全局-局部特征融合模块的人体姿态估计网络模型(GLF-Net)。为了在特征提取阶段获得高质量的特征图,该算法从全局特征和局部特征出发,... 针对现有人体姿态估计算法存在因骨干网络特征提取不充分,导致关键点特征信息丢失的问题,提出一种结合全局-局部特征融合模块的人体姿态估计网络模型(GLF-Net)。为了在特征提取阶段获得高质量的特征图,该算法从全局特征和局部特征出发,对骨干网络ResNet-50进行改进,分别设计了全局极化自注意力模块和局部深度可分离卷积模块。同时采用并行的结构方式将融合了全局位置信息和局部语义信息特征的模块嵌入到骨干网络的Bottleneck层中,既能增强原骨干网络的特征提取能力,又为后续的Transformer网络提供有效的全局和局部特征输入,进而提高姿态关键点检测的性能。在公开人体姿态估计数据集COCO 2017上和MPII数据集上分别进行模型测试,该算法性能与与基准算法(Poseur)相比,姿态关键点的平均准确度(AP)提升了2.1%,平均召回率(AR)提升了1.5%,正确估计关键点比例(PCKh@0.5)最高达到90.6。实验结果表明,所提算法在姿态估计精度上优于现存同类方法,可以明显提高人体姿态关键点的定位准确度。 展开更多
关键词 人体姿态估计 特征提取 全局极化自注意力 局部深度可分离卷积 全局-局部特征融合
在线阅读 下载PDF
结合目标特征增强与语义-位置路径聚合的水下目标检测
6
作者 宋巍 倪舟 +2 位作者 梁纪辰 张明华 王建 《计算机工程与应用》 北大核心 2025年第15期93-110,共18页
针对水下图像质量差、目标多尺度和严重遮挡导致的漏检和误检等问题,提出一种结合目标信息增强与语义-位置路径聚合的水下目标检测模型。该模型以RT-DETR框架为基础,提出了边缘特征多尺度注入模块(multiscale injection for edge featur... 针对水下图像质量差、目标多尺度和严重遮挡导致的漏检和误检等问题,提出一种结合目标信息增强与语义-位置路径聚合的水下目标检测模型。该模型以RT-DETR框架为基础,提出了边缘特征多尺度注入模块(multiscale injection for edge features module,MSI-Edge),将边缘信息注入深层网络中,强化了模型对小目标的感知能力;同时,提出了全局-局部特征增强模块(global-local feature enhancement module,GLF-Enhance)来替代编码器中的传统多头自注意力机制,增强对目标全局和局部信息的学习能力,并加速模型推理;进而,设计了一种新的结合语义-位置路径聚合网络(semantic-location path aggregation network,SL-PAN),利用高层特征作为权重来指导低层特征中的语义信息学习,再使用低层特征作为权重来指导高层特征中的位置信息学习,从而有效缓解多尺度特征融合过程中信息传递退化的问题。在公开水下数据集上进行实验验证,相较基准模型RT-DETR(ResNet50主干网络),在URPC数据集上AP、AP^(50)、AP^(75)指标分别提升了约3.2、3.0和2.7个百分点;在DUO数据集上分别提升了2.9、2.7、3.0个百分点,同时有效降低了误检和漏检率。消融实验验证了各模块的有效性。整体性能与主流目标检测器及最新水下目标检测器相比,达到了较好水平。 展开更多
关键词 水下目标检测 语义-位置路径聚合网络 边缘特征多尺度注入 RT-DETR模型 全局-局部特征增强
在线阅读 下载PDF
基于全局-局部特征和自适应注意力机制的图像语义描述算法 被引量:6
7
作者 赵小虎 尹良飞 赵成龙 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第1期126-134,共9页
为了探究图像底层视觉特征与高层语义概念存在的差异,提出可以确定图像关注重点、挖掘更高层语义信息以及完善描述句子的细节信息的图像语义描述算法.在图像视觉特征提取时提取输入图像的全局-局部特征作为视觉信息输入,确定不同时刻对... 为了探究图像底层视觉特征与高层语义概念存在的差异,提出可以确定图像关注重点、挖掘更高层语义信息以及完善描述句子的细节信息的图像语义描述算法.在图像视觉特征提取时提取输入图像的全局-局部特征作为视觉信息输入,确定不同时刻对图像的关注点,对图像细节的描述更加完善;在解码时加入注意力机制对图像特征加权输入,可以自适应选择当前时刻输出的文本单词对视觉信息与语义信息的依赖权重,有效地提高对图像语义描述的性能.实验结果表明,该方法相对于其他语义描述算法效果更有竞争力,可以更准确、更细致地识别图片中的物体,对输入图像进行更全面地描述;对于微小的物体的识别准确率更高. 展开更多
关键词 图像语义描述 图像关注点 高层语义信息 描述句子细节 全局-局部特征提取 自适应注意力机制
在线阅读 下载PDF
结合CSWin-Transformer和门卷积的壁画图像修复方法 被引量:4
8
作者 徐志刚 杨欣宇 《计算机工程与应用》 CSCD 北大核心 2024年第21期215-224,共10页
敦煌壁画是珍贵的文化遗产,但现存壁画存在着大量破损现象。针对现有图像修复方法在处理敦煌壁画时面临着计算复杂度高、纹理模糊和特征提取不足等问题,提出了一种结合CSWin-Transformer(cross stripe window-Transformer)和门卷积的壁... 敦煌壁画是珍贵的文化遗产,但现存壁画存在着大量破损现象。针对现有图像修复方法在处理敦煌壁画时面临着计算复杂度高、纹理模糊和特征提取不足等问题,提出了一种结合CSWin-Transformer(cross stripe window-Transformer)和门卷积的壁画图像修复方法。构建由全局层网络和局部层门卷积残差密集网络组成的并行网络,利用条纹窗口增强图像特征提取能力,并通过门卷积残差块提升结构纹理修复的准确性。设计全局-局部特征融合模块来融合全局层和局部层输出的特征图像,以保持修复结果整体的一致性。通过建立共享注意力机制实现全局层和局部层之间的信息交互,同时为了完成破损壁画的修复,采用谱归一化马尔科夫判别模型进行对抗训练。通过对真实破损壁画的修复实验,结果表明,所提方法在主客观指标上均优于所对比的方法。 展开更多
关键词 深度学习 壁画修复 门卷积 CSWin-Transformer 全局-局部特征融合
在线阅读 下载PDF
基于联合特征与中心方向信息的图像哈希算法 被引量:9
9
作者 王彦超 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第2期113-124,共12页
为了提高哈希技术对旋转操作的识别能力,提出了全局-局部联合特征耦合中心方向信息估计的图像哈希认证技术.首先,引入2D线性插值技术,对输入的图像进行预处理,使其对任意的缩放操作都具有固定尺寸的哈希序列;然后,将预处理图像转变为HS... 为了提高哈希技术对旋转操作的识别能力,提出了全局-局部联合特征耦合中心方向信息估计的图像哈希认证技术.首先,引入2D线性插值技术,对输入的图像进行预处理,使其对任意的缩放操作都具有固定尺寸的哈希序列;然后,将预处理图像转变为HSV彩色空间,借助二维离散小波变换(Discrete Wave Transform,DWT)处理V分量,利用其低频系数形成二次图像;再引入奇异值分解(Singular Value Decomposition,SVD)处理二次图像,提取其全局特征,将其作为第一个中间哈希序列;基于Fourier机制,借助残差方法,确定图像的显著区域,获取其位置与纹理的局部特征,作为第二个中间哈希序列;随后,引入Radon变换,通过计算图像的中心方向信息,将其与2个中间哈希序列组合,形成过渡哈希数组;借助Logistic映射,定义动态引擎参数,从而设计了分段异扩散技术,对过渡哈希数组进行加密,输出最终的哈希序列;最后,通过估算原始哈希序列与待检测哈希序列的Hamming距离,将其与用户阈值进行比较,完成图像认证.实验结果显示:与当前的图像哈希技术相比,所提算法具有更高的鲁棒性与安全性,对旋转攻击能力具有更好的识别能力. 展开更多
关键词 图像哈希 HSV彩色空间 全局-局部联合特征 频谱残差 显著区域 中心方向信息 分段异扩散技术
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部