期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于时间序列压缩分割的监测数据异常识别算法研究 被引量:9
1
作者 蒲黔辉 张子怡 +2 位作者 肖图刚 洪彧 文旭光 《桥梁建设》 EI CSCD 北大核心 2024年第3期15-23,共9页
为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时... 为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时间序列通过基于序列重要点(Series Importance Point, SIP)的时间序列线性分段(Piecewise Linear Represent, PLR)算法(PLR_SIP)得到数条时间子序列;然后采用欧氏距离进行时间子序列的相似性分析,并基于改进的局部离群因子(Local Outlier Factor, LOF)算法计算每条时间子序列的局部离群因子;最后将其与设定的阈值相比较,从而识别出监测数据的异常。为验证该算法的准确性与工程实用性,对某公路大跨度斜拉桥健康监测数据进行异常识别。结果表明:采用PLR_SIP算法对原始时间序列压缩分割得到的时间子序列能够准确地反映原序列的变化趋势和范围;改进的LOF算法突破了传统LOF算法仅能识别离群值这类无持续时间异常的局限性,能够排除噪声的干扰,实现对离群、缺失和漂移3种异常的识别。该算法无需定义训练集,直接以原始监测数据作为算法的输入,同时能够自适应调整阈值参数,具有良好的可扩展性、实时性、准确性和高效性,适用于处理实时、大量的桥梁健康监测数据。 展开更多
关键词 斜拉桥 健康监测数据 异常识别 PLR_SIP算法 LOF算法 时间序列 欧氏距离 局部离群因子
在线阅读 下载PDF
基于光流法与特征统计的鱼群异常行为检测 被引量:29
2
作者 于欣 侯晓娇 +3 位作者 卢焕达 余心杰 范良忠 刘鹰 《农业工程学报》 EI CAS CSCD 北大核心 2014年第2期162-168,共7页
鱼类群体行为的异常检测能够为鱼类健康监控与预警提供重要的方法和手段,对研究鱼类行为的机理,提升水产养殖过程中的信息化水平具有非常重要的意义。该文通过计算机视觉和图像处理技术,基于鱼群运动特征统计方法,对鱼群异常行为检测进... 鱼类群体行为的异常检测能够为鱼类健康监控与预警提供重要的方法和手段,对研究鱼类行为的机理,提升水产养殖过程中的信息化水平具有非常重要的意义。该文通过计算机视觉和图像处理技术,基于鱼群运动特征统计方法,对鱼群异常行为检测进行研究。利用Lucas-Kanade光流法得到目标鱼群的运动矢量,并对目标运动的行为特征进行统计,得到速度与转角这2个行为特征的联合直方图与联合概率分布。最后,在联合概率分布的基础上,基于标准互信息(normalized mutual information-NMI)和局部距离异常因子(local distance-based outlier factor-LDOF)2种方法对鱼群行为进行异常检测。试验结果表明,2种异常检测方法均达到99.5%以上的准确率。 展开更多
关键词 水产养殖 鱼群检测 光流法 标准互信息(NMI) 局部距离异常因子(ldof)
在线阅读 下载PDF
一种基于密度的数据流检测算法SWKLOF 被引量:3
3
作者 魏中贺 李少波 +1 位作者 唐向红 陈力 《科学技术与工程》 北大核心 2014年第34期219-223,共5页
总结目前数据流在线检测算法的优缺点,提出了一种新的数据流在线检测算法—SWKLOF。该算法采用滑动时间窗口对数据流进行封装,用k-距离进行剪枝,剔除大部分正常数据,对剩余疑似异常数据采用局部离群因子LOF(local outlier factor)进一... 总结目前数据流在线检测算法的优缺点,提出了一种新的数据流在线检测算法—SWKLOF。该算法采用滑动时间窗口对数据流进行封装,用k-距离进行剪枝,剔除大部分正常数据,对剩余疑似异常数据采用局部离群因子LOF(local outlier factor)进一步精确筛选。理论分析和实验结果表明该算法降低了时间复杂度,提高了检测准确性。 展开更多
关键词 数据流 滑动时间窗口 k-距离 局部离群因子 异常检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部