期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
基于集成局部费舍尔判别分析的故障分类 被引量:3
1
作者 钟凯 徐明星 韩敏 《控制理论与应用》 EI CAS CSCD 北大核心 2021年第4期489-495,共7页
实际工业过程数据的局部特性一般都较为复杂,不利于样本特征的提取和故障分类精度的提高.针对此问题,本文提出一种集成的局部费舍尔判别分析(ILFDA)模型,可以同时从变量和样本两个维度挖掘数据的局部结构特征,提高故障分类的性能并降低... 实际工业过程数据的局部特性一般都较为复杂,不利于样本特征的提取和故障分类精度的提高.针对此问题,本文提出一种集成的局部费舍尔判别分析(ILFDA)模型,可以同时从变量和样本两个维度挖掘数据的局部结构特征,提高故障分类的性能并降低建模的难度.首先,根据过程的结构原理对复杂系统进行分块,从而可以有效获取变量维度的数据局部信息,并排除无关变量的影响.其次,针对样本维度的数据局部信息,在每个变量子块中分别建立局部费舍尔判别分析(LFDA)模型,并为每个局部模型分配相应的权值,从而可以更准确地衡量不同子块对当前故障的影响程度.最后,利用分类性能加权策略将各个子块的分类结果进行融合.田纳西–伊斯曼(TE)过程中的仿真结果验证本文所提的ILFDA方法具有更好的故障分类效果. 展开更多
关键词 故障分类 局部费舍尔判别分析 分类结果集成 数据局部结构特征
在线阅读 下载PDF
基于i-vector局部加权线性判别分析的说话人识别 被引量:6
2
作者 王明合 唐振民 张二华 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第12期2842-2848,共7页
基于i-vector的说话人识别系统通常采用LDA来消除训练和测试语音之间信道失配,不能保证样本在待识别语音近邻区域内具有最佳的分离度,这就使得目标说话人和其近邻间的得分差异较小,进而导致识别准确性下降。针对该问题,提出基于i-vecto... 基于i-vector的说话人识别系统通常采用LDA来消除训练和测试语音之间信道失配,不能保证样本在待识别语音近邻区域内具有最佳的分离度,这就使得目标说话人和其近邻间的得分差异较小,进而导致识别准确性下降。针对该问题,提出基于i-vector局部加权线性判别分析的说话人识别方法(LWLDA)。在计算类内和类间散度时,增加待识别语音近邻样本权重。在此基础上,通过提高待识别语音近邻域局部类间的分辨能力,尽可能减少因信道差异而产生的识别错误。在不同语音库上的实验结果表明:LWLDA在复杂信道环境下能够保持良好的鲁棒性;在交叉信道条件下的识别准确率比LDA平均提高3.6%。 展开更多
关键词 语音处理 说话人识别 身份认证向量 局部加权线性判别分析
在线阅读 下载PDF
基于改进局部线性判别分析的化工系统状态监测方法 被引量:2
3
作者 高智勇 陈子胜 +1 位作者 高建民 王荣喜 《计算机集成制造系统》 EI CSCD 北大核心 2016年第4期1097-1103,共7页
针对化工系统监测数据呈现出的强非线性、数据高维等特点,将标注样本的局部线性分析与训练样本的全局分析相结合,提出一种改进的局部线性判别分析方法。利用训练样本标签信息,以异类样本点间的最小欧式距离重新定义异类样本之间的边界,... 针对化工系统监测数据呈现出的强非线性、数据高维等特点,将标注样本的局部线性分析与训练样本的全局分析相结合,提出一种改进的局部线性判别分析方法。利用训练样本标签信息,以异类样本点间的最小欧式距离重新定义异类样本之间的边界,构建了新的局部类间离散度矩阵;引入全局离散度矩阵强化训练样本全局分析,克服了只计算局部离散度矩阵的缺点。在田纳西—伊斯曼过程数据和某企业压缩机组监测数据上进行了仿真实验,结果表明所提方法与局部线性判别分析等若干种非线性分析方法相比,具有更好的非线性处理能力,可以获得更高的异常状态识别准确率。 展开更多
关键词 特征提取 状态监测 流形学习 局部线性判别分析 田纳西—伊斯曼过程
在线阅读 下载PDF
面向局部线性回归分类器的判别分析方法 被引量:2
4
作者 朱换荣 郑智超 孙怀江 《智能系统学报》 CSCD 北大核心 2019年第5期959-965,共7页
局部线性回归分类器(locality-regularized linear regression classification,LLRC)在人脸识别上表现出了高识别率以及高效性的特点,然而原始特征空间并不能保证LLRC的效率。为了提高LLRC的性能,提出了一种与LLRC相联系的新的降维方法... 局部线性回归分类器(locality-regularized linear regression classification,LLRC)在人脸识别上表现出了高识别率以及高效性的特点,然而原始特征空间并不能保证LLRC的效率。为了提高LLRC的性能,提出了一种与LLRC相联系的新的降维方法,即面向局部线性回归分类器的判别分析方法(locality-regularized linear regressionclassification based discriminant analysis,LLRC-DA)。LLRC-DA根据LLRC的决策准则设计目标函数,通过最大化类间局部重构误差并最小化类内局部重构误差来寻找最优的特征子空间。此外,LLRC-DA通过对投影矩阵添加正交约束来消除冗余信息。为了有效地求解投影矩阵,利用优化变量之间的关系,提出了一种新的迹比优化算法。因此LLRC-DA非常适用于LLRC。在FERET和ORL人脸库上进行了实验,实验结果表明LLRCDA比现有方法更具有优越性。 展开更多
关键词 局部线性回归分类器 维数约简 正交投影 迹比问题 人脸识别 特征提取 判别分析 线性回归分类器
在线阅读 下载PDF
基于判别回归与局部判别分析的维数约简算法
5
作者 林平荣 孙亚新 文贵华 《计算机工程与设计》 北大核心 2017年第5期1371-1376,共6页
线性判别回归分类算法没有考虑到类内距离和类间距离,为此提出一种基于线性判别回归与局部判别分析的维数约简算法(LDRFDR),同时利用类内和类间重构误差、以及类内和局部类间距离获得投影矩阵。其物理含义是为各个类尽量寻找相互之间离... 线性判别回归分类算法没有考虑到类内距离和类间距离,为此提出一种基于线性判别回归与局部判别分析的维数约简算法(LDRFDR),同时利用类内和类间重构误差、以及类内和局部类间距离获得投影矩阵。其物理含义是为各个类尽量寻找相互之间离得最远的线性子空间,其中类内距离与类间距离还考虑数据的局部性,避免最大化相离太远的类间样本对优化目标造成影响。实验结果表明,LDRFDR算法的维数约简性能优于其它半监督维数约减算法。 展开更多
关键词 线性判别回归 局部判别分析 局部重构 维数约减 线性子空间
在线阅读 下载PDF
用于人脸识别的正则正交化的局部判别分析
6
作者 杨晓梅 《计算机应用与软件》 CSCD 北大核心 2013年第5期33-35,75,共4页
非线性结构保持能力的不足是正则正交化的线性判别分析ROLDA(Regularized Orthogonal Linear Discriminant Analysis)在人脸识别中的主要问题。提出一个用于人脸识别的正则正交化的局部Fisher判别分析ROLFDA(Regularized Orthogonal Loc... 非线性结构保持能力的不足是正则正交化的线性判别分析ROLDA(Regularized Orthogonal Linear Discriminant Analysis)在人脸识别中的主要问题。提出一个用于人脸识别的正则正交化的局部Fisher判别分析ROLFDA(Regularized Orthogonal LocalFisher Discriminant Analysis)降维算法。该算法在ROLDA基础上引入局部结构保持,继承ROLDA的特性,克服了ROLDA的非线性能力的不足的问题。在YaleB和AR人脸数据集上的实验验证了该算法的有效性。 展开更多
关键词 人脸识别 降维 正则正交化的线性判别分析 局部结构保持
在线阅读 下载PDF
基于线性判别局部保留映射的人脸表情识别 被引量:4
7
作者 支瑞聪 阮秋琦 《信号处理》 CSCD 北大核心 2009年第2期233-237,共5页
随着人机交互技术的发展,情感计算成为一个研究热点。局部保留映射(LPP)是一种最优的保持数据集局部结构的一种线性映射,它的特点是保留了样本的局部结构,但是它没有考虑判别信息,从而容易引起类间距离小的类别之间的重叠。本文提出了... 随着人机交互技术的发展,情感计算成为一个研究热点。局部保留映射(LPP)是一种最优的保持数据集局部结构的一种线性映射,它的特点是保留了样本的局部结构,但是它没有考虑判别信息,从而容易引起类间距离小的类别之间的重叠。本文提出了基于线性判别的局部保留映射(DLPP)算法并将其应用到表情识别问题中。与LPP相比,DLPP的改进之处在于将判别分析的思想引入LPP。同时考虑样本间的相邻关系和模式类之间的相邻关系,从而得到能正确分类的最优投影方向。在Yale人脸库和JAFFE表情库中的一系列表情识别实验结果表明,DLPP对于人脸表情识别更为有效。 展开更多
关键词 局部保留映射 线性判别分析 表情识别
在线阅读 下载PDF
一种自适应邻域选择半监督判别分析算法 被引量:1
8
作者 刘云东 李鸿 +1 位作者 白万荣 刘罡 《计算机工程与应用》 CSCD 北大核心 2011年第35期180-183,187,共5页
为克服边界Fisher判别分析(MFA)只利用少量有标记样本和构建邻域不能充分反映流形学习对邻域要求的缺点,提出一种基于局部线性结构的自适应邻域选择半监督判别分析的算法。采用自适应算法扩大或者缩小近邻系数k来构建邻域以保持局部线... 为克服边界Fisher判别分析(MFA)只利用少量有标记样本和构建邻域不能充分反映流形学习对邻域要求的缺点,提出一种基于局部线性结构的自适应邻域选择半监督判别分析的算法。采用自适应算法扩大或者缩小近邻系数k来构建邻域以保持局部线性结构。MFA通过少量有类别标签样本进行降维的同时UDP对大量无标签样本进行学习,以半监督的方法对高维人脸数据进行维数约减。最后,在ORL和YALE人脸数据库通过实验结果验证了该算法的有效性。 展开更多
关键词 边界Fisher判别分析 无监督鉴别投影 半监督 局部线性结构 邻域选择
在线阅读 下载PDF
基于混合型判别分析的工业过程监控及故障诊断 被引量:12
9
作者 陈晓露 王瑞璇 +1 位作者 王晶 周靖林 《自动化学报》 EI CSCD 北大核心 2020年第8期1600-1614,共15页
工业过程数据具有规模性大、复杂性高、变量多、关联性强等特点.如何从数据出发准确并快速地发现故障并处理,保证过程高效运行意义重大.本文针对复杂的工业过程,提出了一种多方法结合的混合型过程监控与故障诊断方法,完成数据分类,构建... 工业过程数据具有规模性大、复杂性高、变量多、关联性强等特点.如何从数据出发准确并快速地发现故障并处理,保证过程高效运行意义重大.本文针对复杂的工业过程,提出了一种多方法结合的混合型过程监控与故障诊断方法,完成数据分类,构建故障模型库,故障在线诊断及可视化相关处理.首先通过常规主成分分析(Principal component analysis,PCA)方法对历史数据进行初筛,区分出正常和故障信息,然后利用聚类方法对故障数据集进行分类,接着利用局部线性指数判别分析方法(Local linear exponential discriminant analysis,LLEDA)建立故障模型库进而进行故障诊断.本文将基于监督学习的LLEDA方法拓展到无监督学习,便于复杂工业大量无标签数据的处理.最后利用典型的田纳西伊士曼(Tennessee Eastman,TE)过程对所提出的方法进行有效性验证. 展开更多
关键词 复杂工业过程 混合型故障诊断 局部线性指数判别分析 可视化
在线阅读 下载PDF
一种改进的多流形判别分析方法在特征提取中的应用
10
作者 张玉娇 《计算机应用与软件》 CSCD 2015年第9期175-180,共6页
传统的多流形判别分析(MMDA)方法要求每类样本数目必须相同,这在实际中往往很难满足,因此限制了它的应用。针对此问题,提出一种改进的多流形判别分析(IMMDA)方法。该方法去除了MMDA中的限制条件,用类内图和类间图来描述类内紧凑度和类... 传统的多流形判别分析(MMDA)方法要求每类样本数目必须相同,这在实际中往往很难满足,因此限制了它的应用。针对此问题,提出一种改进的多流形判别分析(IMMDA)方法。该方法去除了MMDA中的限制条件,用类内图和类间图来描述类内紧凑度和类间离散度,类内图可以代表子流形信息,类间图可以代表多流形信息,从而更好地实现分类。在FERET、ORL人脸库及UCI数据集上的实验证明了该方法的有效性。相比其他几种子空间学习方法,该方法取得了更好的识别效果。 展开更多
关键词 多流形学习 线性判别分析 局部保持投影 特征提取
在线阅读 下载PDF
基于局部Fisher判别法的电镜下致密沉积物自动识别(英文)
11
作者 吴金浪 钟凤鸣 +2 位作者 吴强 王亚琼 张笑坛 《电子显微学报》 CAS CSCD 2017年第2期131-141,共11页
本文提出一种在电子显微镜图像中有效检测致密沉积物的方法。致密沉积物在电子显微镜图像中较难分辨,使用传统的SIFT,ORB或者SURF特征检测及描述算法往往难以达到理想的效果。运用传统计算机视觉处理流程,如,SIFT特征提取器以及描述器... 本文提出一种在电子显微镜图像中有效检测致密沉积物的方法。致密沉积物在电子显微镜图像中较难分辨,使用传统的SIFT,ORB或者SURF特征检测及描述算法往往难以达到理想的效果。运用传统计算机视觉处理流程,如,SIFT特征提取器以及描述器来进行特征提取,再建立bag-of-words全局特征向量,最后使用支持向量机来进行分类,在进行致密沉积物的分类操作中难度比较大。本文选择了实用LBP特征提取器来提取高反差度的纹理特征,使用梯度直方图特征提取器来提取轮廓特征,同时使用Schimid滤波器组和Gabor滤波器组来提取图像中的常规纹理特征,形成超高维度的特征向量使其包含显微镜图像中的全面特征。由于电子显微镜图像不具备色彩信息,纹理信息变得最为重要,又由于在显微镜图像中,尺度基本可知,LBP以及HOG能非常有效地提取高反差轮廓特征以及质地特征。配合两大纹理滤波器组合将可以确保特征向量在强调高反差特征的同时,不会忽略常规纹理信息。在特征提取出来后使用局部Fisher判别分析来降低特征向量的维度,并选择最具有可区分性和有效的特征。LFDA能够进行无指导的降维,并保留最具可分辨性的特征,对于本文提出的算法至关重要。由于在之前产生的特征向量对所有的特征并不进行强弱区分,经过LFDA后,不重要或者具有广泛普遍性的特征将会被舍弃,而最能够代表致密沉积物的特征将得以保留。这保证了之后的分类器训练能够在不牺牲训练速度的前提下,有效地形成分类区间。最后,算法使用了probabilistic boosting tree来对训练样本进行训练,PBT是按照等级划分的决策树,每一个节点是一个强决策器,它具有不易过度训练、高效准确的特征,通过输入LFDA处理后的训练样本特征向量,来学习得到致密沉积物的分类器。为验证本文提出的方法的可行性,一个包含50张电子显微镜图像的数据库被用于实验中。在这50张电子显微镜图像中,每一张都包含不同数量的沉积物区域。沉积物区域的总数约为500处。这些区域被精确标记。如果算法输出的沉积物标记与人工标记区域的重合率达到50%以上,认为该区域被准确识别,否则认为未能识别。在实验中,10张电子显微镜图像被用于神经网络的训练,而其余40张被用于测试。训练样本为100×100分辨率的图像块,只要图像块中包含沉积物区域,则视为正样本,否则视为负样本。为了增加样本个数,所有正样本被进行了旋转、平移、以及放大和缩小等变换。在训练中,一共500个正样本及约15 000个负样本被输入到PBT。实验结果显示,本文提出的方法能够有效地在真实电子显微镜图像中识别致密沉积物,识别效率接近50%。该结果证明利用LBP特征以及Schimid滤波器组和Gabor滤波器组来提取显微镜图像特征能够全面概括图像中个体的显著性特征,比起单纯使用SIFT以及SURF具有更高的通用性、鲁棒性以及有效性。对于从显微镜图像中提取出来的高维度特征向量,使用局部Fisher判别分析法能够非常有效地实施降维操作,从而保留了显著性的具有区分功能的特征以便更有效的训练分类器。而probabilistic boosting tree对于只具有少量训练样本的训练任务能够相当有效地收敛且避免过度拟合的情况发生。本文提出的处理流程适用于大多数基于显微镜图像下的目标识别、分类以及再识别任务,且具有速度快、高鲁棒性以及易于扩展等特点,具有较高的实用性。 展开更多
关键词 检测 显微镜图像 梯度直方图 局部二值模式 概率推进树 局部费舍尔线性判别分析
在线阅读 下载PDF
一种新的局部判别投影方法 被引量:15
12
作者 谢钧 刘剑 《计算机学报》 EI CSCD 北大核心 2011年第11期2243-2250,共8页
为解决多模数据的分类问题,局部化思想被引入到判别分析中,称为局部判别分析.该文以人工数据为例深入分析了近年来提出的较为成功的两种局部线性判别分析方法:LFDA(Local Fisher Discriminant Analysis)和MFA(Marginal Fisher Analysis... 为解决多模数据的分类问题,局部化思想被引入到判别分析中,称为局部判别分析.该文以人工数据为例深入分析了近年来提出的较为成功的两种局部线性判别分析方法:LFDA(Local Fisher Discriminant Analysis)和MFA(Marginal Fisher Analysis)的不足.为克服这两种方法中没有充分考虑异类样本近邻关系的缺点,文中提出了一种新的局部判别投影方法.该方法采用与LFDA和MFA不同的局部化方法,其基本思想是寻找投影方向使同类近邻样本在投影后尽量紧凑,而异类近邻样本在投影后尽量分开.针对该思想,文中提出了两种优化目标(一种用样本间距离平方和来表示,另一种用样本类内与类间散度来表示)并做了分析和比较.实验结果表明,该文方法有效地克服了LFDA和MFA存在的固有问题,在人工数据集、UCI、USPS手写数字标准数据集和IDA标准数据集上均取得较好效果. 展开更多
关键词 分类 降维 线性判别分析 局部保持 多模
在线阅读 下载PDF
一种基于局部和判别特性的降维算法 被引量:1
13
作者 张国印 楼宋江 +1 位作者 王庆军 程慧杰 《计算机应用研究》 CSCD 北大核心 2009年第9期3324-3325,3329,共3页
提出了一种基于LPP和LDA的降维算法。该算法不仅考虑了LPP能保持局部邻近关系属性,还考虑了LDA能使降维后的数据更易于分类属性,并且该算法是线性的,很容易将新样本映射到目标空间。在人脸识别中的实验验证了算法的正确性和有效性。
关键词 维数约简 局部保持投影 线性判别分析 人脸识别
在线阅读 下载PDF
基于监督局部线性嵌入的中药材分类鉴别研究 被引量:3
14
作者 张鹏琴 何家峰 骆德汉 《计算机应用研究》 CSCD 北大核心 2018年第1期101-104,120,共5页
电子鼻所采集的中药材气味信息往往具有高维性和非线性。针对气味信息的这种特性,提出一种基于监督局部线性嵌入(SLLE)和线性判别分析(LDA)的气味数据分析方法。利用SLLE对所采集的高维非线性气味信息进行降维,目的是提取出气味数据内... 电子鼻所采集的中药材气味信息往往具有高维性和非线性。针对气味信息的这种特性,提出一种基于监督局部线性嵌入(SLLE)和线性判别分析(LDA)的气味数据分析方法。利用SLLE对所采集的高维非线性气味信息进行降维,目的是提取出气味数据内在的低维流行特征,并增大类别间的辨别信息;然后在低维空间中,利用LDA进行特征分类判别。通过实验,分别将该方法与单独使用SLLE及PCA+LDA方法进行对比分析,结果表明,该方法可以很好地对五种不同种类的中药材及三种不同产地的何首乌进行分类鉴别,其个体识别率和整体识别率均可达到100%,为使用电子鼻对中药材进行分类鉴别提供了一种行之有效的方法。 展开更多
关键词 中药材 PEN3电子鼻 分类鉴别 监督局部线性嵌入 监督局部线性嵌入+线性判别分析
在线阅读 下载PDF
基于局部边缘判别投影的发动机故障诊断方法
15
作者 梁华 吕丽平 王成勇 《噪声与振动控制》 CSCD 北大核心 2023年第3期90-94,109,共6页
在线性判别分析(Linear Discriminant Analysis,LDA)的基础上,局部边缘判别投影(Locality Margin Discriminant Projection,LMDP)重新定义类间散布矩阵和类内散布矩阵,使得数据样本中异类样本在低维空间中的距离更远、同类样本在低维空... 在线性判别分析(Linear Discriminant Analysis,LDA)的基础上,局部边缘判别投影(Locality Margin Discriminant Projection,LMDP)重新定义类间散布矩阵和类内散布矩阵,使得数据样本中异类样本在低维空间中的距离更远、同类样本在低维空间中的距离更近,增强数据样本的可区分度。为更好提取发动机的故障特征,实现发动机故障有效诊断,以LMDP为核心,结合特征提取方法和模式识别方法,给出基于LMDP的发动机故障诊断流程。发动机故障诊断结果表明,LMDP可实现发动机不同故障类型的有效区分,显著提升后续的诊断精度,具有一定的优势。 展开更多
关键词 故障诊断 线性判别分析 局部边缘判别投影 散布矩阵 发动机
在线阅读 下载PDF
基于能量的自适应局部Gabor特征提取的人脸识别 被引量:4
16
作者 周立俭 马妍妍 孙洁 《计算机应用》 CSCD 北大核心 2013年第3期700-703,共4页
为了解决传统Gabor滤波器组在人脸识别过程中特征提取时间长、计算量大的问题,从不同方向、不同尺度以及全局角度按照能量大小构建了3种不同的局部Gabor滤波器组用来提取人脸特征。首先,分析数据库中部分图像Gabor变换后的图像能量,从... 为了解决传统Gabor滤波器组在人脸识别过程中特征提取时间长、计算量大的问题,从不同方向、不同尺度以及全局角度按照能量大小构建了3种不同的局部Gabor滤波器组用来提取人脸特征。首先,分析数据库中部分图像Gabor变换后的图像能量,从不同角度选出能量较大的图像构建对应的局部Gabor滤波器组;其次,根据所选滤波器组提取局部Gabor特征;然后,采用线性判别分析(LDA)法进一步提取Fisher特征;最后,利用最近邻法识别人脸图像。基于ORL人脸库和YALE人脸库的实验结果表明提出的人脸识别方法降低了人脸图像的特征维数,缩短了特征提取的时间,有效地提高了人脸识别率。 展开更多
关键词 人脸识别 特征提取 局部Gabor滤波器组 自适应 线性判别分析
在线阅读 下载PDF
基于局部二值模式和级联AdaBoost的多模态人脸识别 被引量:5
17
作者 叶剑华 刘正光 《计算机应用》 CSCD 北大核心 2008年第11期2853-2855,2883,共4页
提出了一种基于局部二值模式(LBP)和级联AdaBoost的多模态人脸识别方法。采用级联AdaBoost算法分别从人脸深度图像和灰度图像的大量区域LBP直方图(RLBPH)中选出最有利于分类的少量特征,并连接成一个直方图向量,再分别用线性判别分析构... 提出了一种基于局部二值模式(LBP)和级联AdaBoost的多模态人脸识别方法。采用级联AdaBoost算法分别从人脸深度图像和灰度图像的大量区域LBP直方图(RLBPH)中选出最有利于分类的少量特征,并连接成一个直方图向量,再分别用线性判别分析构建相应的线性子空间,用余弦相似度作为投影向量的相似度量,用求和规则进行信息融合。在FRGC数据库上的实验结果表明,提出的方法采用少量的特征取得了很好的识别效果,等错误率仅为1.40%。 展开更多
关键词 局部二值模式 级联AdaBoost 多模态人脸识别 线性判别分析
在线阅读 下载PDF
基于局部二元模式的面部表情识别研究 被引量:3
18
作者 应自炉 方谢燕 《计算机工程与应用》 CSCD 北大核心 2009年第29期180-183,共4页
提出了一种基于局部二元模式(Local Binary Pattern,LBP)与支持向量机(SVM)相结合的面部表情识别方法。使用LBP算子对图像进行处理,对图像的模式进行统计形成面部表情特征;使用线性判别分析对表情特征进行降维处理;采用支持向量机对面... 提出了一种基于局部二元模式(Local Binary Pattern,LBP)与支持向量机(SVM)相结合的面部表情识别方法。使用LBP算子对图像进行处理,对图像的模式进行统计形成面部表情特征;使用线性判别分析对表情特征进行降维处理;采用支持向量机对面部表情进行分类。用Matlab实现了上述方法,并在日本女性人脸表情(JAFFE)数据库上测试,取得了70.95%的识别率。 展开更多
关键词 面部表情识别 局部二元模式 线性判别分析 支持向量机
在线阅读 下载PDF
基于局部保留映射与径向基网络的人脸识别方法 被引量:2
19
作者 梅健强 刘正光 《天津大学学报》 EI CAS CSCD 北大核心 2008年第4期419-422,共4页
局部保留映射(locality preserving projections,LPP)选择人脸子空间特征包含非线性信息而不利于最近邻法分类.基于径向基函数(radial basis function,RBF)分类器可以将非线性可分问题转化为线性可分问题的特点,提出了利用LPP子空间和RB... 局部保留映射(locality preserving projections,LPP)选择人脸子空间特征包含非线性信息而不利于最近邻法分类.基于径向基函数(radial basis function,RBF)分类器可以将非线性可分问题转化为线性可分问题的特点,提出了利用LPP子空间和RBF网络相结合进行人脸识别的方法,LPP算法采用监督模式,RBF网络隐层中心采用正交最小二乘(orthogonal least-squares,OLS)法训练.实验结果表明,该方法在Yale-B和Yale-B Extended人脸数据库上的识别率为95.67%,在CMU-PIE人脸数据库上的识别率为98.52%,具有较好的抗噪能力,识别效果优于特征脸、Fisher脸以及拉普拉斯脸法. 展开更多
关键词 人脸识别 主成分分析 线性判别分析 局部保留映射 径向基函数
在线阅读 下载PDF
基于局部中频Gabor滤波器组的人脸识别
20
作者 周立俭 马妍妍 孙洁 《计算机工程与设计》 CSCD 北大核心 2013年第10期3635-3638,共4页
针对传统Gabor滤波器组在人脸识别过程中特征提取时间长、计算量大的问题,提出一种利用局部Gabor滤波器组进行人脸图像中频特征提取的方法。选择中频带的Gabor滤波器构造局部中频Gabor滤波器组;提取局部Gabor中频特征;采用线性判别分析... 针对传统Gabor滤波器组在人脸识别过程中特征提取时间长、计算量大的问题,提出一种利用局部Gabor滤波器组进行人脸图像中频特征提取的方法。选择中频带的Gabor滤波器构造局部中频Gabor滤波器组;提取局部Gabor中频特征;采用线性判别分析法(linear discriminate analysis,LDA)进一步提取Fisher特征,得到图像的Gabor+Fisher特征,利用最近邻法进行人脸图像识别。基于ORL和AR人脸库的实验结果表明,基于此局部Gabor滤波器组的人脸识别方法较传统的Gabor特征提取方法降低了40%的特征维数,加快了特征提取速度,提高了人脸识别率。 展开更多
关键词 人脸识别 特征提取 局部Gabor滤波器组 中频 线性判别分析法(LDA)
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部