期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于主动学习和二次有理核的模型无关局部解释方法
1
作者 周晟昊 袁伟伟 关东海 《计算机科学》 CSCD 北大核心 2024年第2期245-251,共7页
深度学习模型的广泛使用,在更大程度上使人们意识到模型的决策是亟需解决的问题,复杂难以解释的黑盒模型阻碍了算法在实际场景中部署。LIME作为最流行的局部解释方法,生成的扰动数据却具有不稳定性,导致最终的解释产生偏差。针对上述问... 深度学习模型的广泛使用,在更大程度上使人们意识到模型的决策是亟需解决的问题,复杂难以解释的黑盒模型阻碍了算法在实际场景中部署。LIME作为最流行的局部解释方法,生成的扰动数据却具有不稳定性,导致最终的解释产生偏差。针对上述问题,提出了一种基于主动学习和二次有理核的模型无关局部解释方法ActiveLIME,使得局部解释模型更加忠于原始分类器。ActiveLIME生成扰动数据后,通过主动学习的查询策略对扰动数据进行采样,筛选不确定性高的扰动集训练,使用迭代过程中准确度最高的局部模型对感兴趣实例生成解释。并且,针对容易陷入局部过拟合的高维稀疏样本,在模型损失函数中引入了二次有理核来减少过拟合。实验结果表明,所提出的ActiveLIME方法引比传统局部解释方法具有更高的局部保真度和解释质量。 展开更多
关键词 局部解释 扰动采样 主动学习查询策略 二次有理核
在线阅读 下载PDF
来自大别山深成侵入岩图像深度迁移学习的可解释性研究 被引量:3
2
作者 陈忠良 袁峰 +1 位作者 李晓晖 郑超杰 《地质论评》 CAS CSCD 北大核心 2023年第6期2263-2273,共11页
岩石图像识别是以深度学习为代表的感知智能在地质领域的典型应用场景。已有研究显示网络结构简单的深度卷积神经网络能够在岩石图像上取得比复杂网络结构高的分类准确率。这与ImageNet数据集上网络结构越深越好的趋势相悖。如何解释这... 岩石图像识别是以深度学习为代表的感知智能在地质领域的典型应用场景。已有研究显示网络结构简单的深度卷积神经网络能够在岩石图像上取得比复杂网络结构高的分类准确率。这与ImageNet数据集上网络结构越深越好的趋势相悖。如何解释这一现象?深成侵入岩为显晶质,自形—半自形粒状结构,块状构造,其分类的依据是其矿物成分及相对含量。大别山地区岩浆活动广泛,中生代深成侵入岩广泛出露。岩石类型包括超镁铁质岩类、辉长岩类、闪长岩类、正长岩类、二长岩类和花岗岩类,基本覆盖IUGS推荐的深成侵入岩分类方案中的岩石类型。选取大别山地区中生代深成岩图像开展不同网络结构预训练模型迁移学习对比试验,能够专注于深度学习对矿物成分特征的学习解释,降低构造因素的影响。借助局部可理解的模型解释技术和特征图可视化技术,分别从全连接层分类决策区域可视化和卷积隐层可视化两方面对深度学习模型开展可解释性研究。结果表明简单网络结构的卷积神经网络能够提取不同矿物所表现出的颜色特征以及不同矿物组合所表现出的纹理特征。AlexNet模型的削减试验进一步证明:对于岩石图像深度学习,网络结构并不总是越深越好。 展开更多
关键词 深度学习 岩性识别 解释 特征图可视化 局部可理解的模型解释
在线阅读 下载PDF
IsomapVSG-LIME:一种新的模型无关解释方法 被引量:1
3
作者 向许 于洪 +1 位作者 张晓霞 王国胤 《智能系统学报》 CSCD 北大核心 2023年第4期841-848,共8页
为了解决局部可解释模型无关的解释(local interpretable model-agnostic explanations,LIME)随机扰动采样方法导致产生的解释缺乏局部忠实性和稳定性的问题,本文提出了一种新的模型无关解释方法IsomapVSG-LIME。该方法使用基于流形学... 为了解决局部可解释模型无关的解释(local interpretable model-agnostic explanations,LIME)随机扰动采样方法导致产生的解释缺乏局部忠实性和稳定性的问题,本文提出了一种新的模型无关解释方法IsomapVSG-LIME。该方法使用基于流形学习的等距映射虚拟样本生成(isometric mapping virtual sample generation,IsomapVSG)方法代替LIME的随机扰动采样方法来生成样本,并使用凝聚层次聚类方法从虚拟样本中选择具有代表性的样本用以训练解释模型;本文还提出了一种新的解释稳定性评价指标—特征序列稳定性指数(features sequence stability index,FSSI),解决了以往评价指标忽略特征的序关系和解释翻转的问题。实验结果表明,本文提出的方法在稳定性和局部忠实性上均优于现有的最新模型。 展开更多
关键词 局部解释模型无关的解释 机器学习 等距映射虚拟样本生成 凝聚层次聚类 稳定性 局部忠实性 随机扰动采样 特征序列稳定性指数
在线阅读 下载PDF
基于LIME的恶意代码对抗样本生成技术
4
作者 黄天波 李成扬 +2 位作者 刘永志 李燈辉 文伟平 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第2期331-338,共8页
基于机器学习检测恶意代码技术的研究和分析,针对机器学习模型对抗样本的生成提出一种基于模型无关的局部可解释(LIME)的黑盒对抗样本生成方法。该方法可以对任意黑盒的恶意代码分类器生成对抗样本,绕过机器学习模型检测。使用简单模型... 基于机器学习检测恶意代码技术的研究和分析,针对机器学习模型对抗样本的生成提出一种基于模型无关的局部可解释(LIME)的黑盒对抗样本生成方法。该方法可以对任意黑盒的恶意代码分类器生成对抗样本,绕过机器学习模型检测。使用简单模型模拟目标分类器的局部表现,获取特征权重;通过扰动算法生成扰动,根据生成的扰动对原恶意代码进行修改后生成对抗样本;基于2015年微软公布的常见恶意样本数据集和收集的来自50多个供应商的良性样本数据对所提方法进行实验,参照常见恶意代码分类器实现了18个基于不同算法或特征的目标分类器,使用所提方法对目标分类器进行攻击,使分类器的真阳性率均降低到接近0。此外,对MalGAN和ZOO两个先进的黑盒对抗样本生成方法与所提方法进行对比,实验结果表明:所提方法能够有效生成对抗样本,且方法本身具有适用范围广泛、能灵活控制扰动和健全性的优点。 展开更多
关键词 对抗样本 恶意代码 机器学习 模型无关的局部解释(LIME) 目标分类器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部