期刊文献+
共找到108篇文章
< 1 2 6 >
每页显示 20 50 100
特征融合的密集连接卷积网络识别鸟鸣声
1
作者 陈晓 颜灏 曾昭优 《电子测量与仪器学报》 北大核心 2025年第5期241-250,共10页
针对目前鸟鸣声识别的深度学习方法提取深层特征单一导致准确率不高的问题,提出一种改进密集连接卷积网络的鸟鸣声识别方法。从鸟鸣声信号中提取梅尔语谱图作为输入,在所有密集块的标准卷积层之后添加卷积块注意力模块,卷积块注意力模... 针对目前鸟鸣声识别的深度学习方法提取深层特征单一导致准确率不高的问题,提出一种改进密集连接卷积网络的鸟鸣声识别方法。从鸟鸣声信号中提取梅尔语谱图作为输入,在所有密集块的标准卷积层之后添加卷积块注意力模块,卷积块注意力模块通过学习训练集的特征表示,判断不同层次鸟鸣声特征信息的重要性和关联性,并按照通道维度和空间维度对其进行更深一步的加权融合,使网络更加关注鸟鸣声特征中重要的特征通道和空间位置,从而提高网络学习鸟鸣声特征的能力;在密集块的标准卷积层之后添加丢弃块算法,促使网络对于不同区域的特征进行更加均衡的学习,提高网络对于新鸟鸣声数据的适应能力,使网络能够更好地捕获数据中的共性特征;再利用Transformer编码器为网络建立一条深层特征提取分支,以提高对于鸟鸣声特征中全局信息和长距离依赖信息的捕捉能力。最后将两个分支提取的深层特征融合以提升深层特征的信息丰富度。该方法在Xeno-Canto数据集进行了7组实验。实验结果表明方法对鸟鸣声识别的平均准确率为88.65%。相较于EMSCNN(ensemble multi-scale convolutional neural network)方法高10.83%,AlexNet方法高20.14%,VGGNet方法高16.3%,DenseNet方法高4.28%。实验证明了方法的有效性和先进性。提出的方法对鸟鸣声识别更准确,可用于实际鸟鸣声的识别。 展开更多
关键词 声音识别 鸟声识别 密集连接卷积网络 特征融合 TRANSFORMER 深度学习
在线阅读 下载PDF
基于全卷积神经网络多任务学习的时域语音分离
2
作者 孙林慧 王春艳 张蒙 《信号处理》 CSCD 北大核心 2024年第12期2228-2237,共10页
基于深度神经网络时频掩码进行语音分离时,目标信号相位一般采用混合信号的相位谱,且对性别组合缺乏针对性处理,这导致分离语音的质量不佳。针对该问题,本文提出一种基于全卷积神经网络联合性别组合检测(Fully Convolutional Neural Net... 基于深度神经网络时频掩码进行语音分离时,目标信号相位一般采用混合信号的相位谱,且对性别组合缺乏针对性处理,这导致分离语音的质量不佳。针对该问题,本文提出一种基于全卷积神经网络联合性别组合检测(Fully Convolutional Neural Network-Gender Combination Detection,FCN-GCD)多任务学习的时域语音分离方法。该方法首先在语音分离支路构建全卷积神经网络,该网络的输入为时域两人混合语音信号,输出为目标讲话者的纯净语音信号,运用卷积编码器和反卷积解码器对特征进行压缩和重建,实现端到端的语音分离。其次将混合语音性别组合检测任务整合到语音分离网络中,在两个任务联合约束下获取辅助信息特征和语音分离特征,并将这些深度特征相结合来提升语音分离质量。该FCN-GCD方法是一种时域语音分离方法,不需要进行相位恢复和频域到时域的重构,相比频域处理方法,该处理过程简单,从而提高了运算效率。另外,该方法从混合语音性别组合检测任务中提取有效的辅助信息特征,利用联合特征实现了更有效的语音分离。实验结果表明,与单任务的语音分离方法相比,本文所提出的FCN-GCD方法在男男、女女和男女三种性别组合下均有效提高了语音质量,在语音质量感知评估(Perceptual Evaluation of Speech Quality,PESQ)、短时客观可懂度(Short-Time Objective Intelligibility,STOI)、信号干扰比(Signalto-Interference Ratio,SIR)、信号失真比(Signal-to-Distortion Ratio,SDR)和信号伪像比(Signal-to-Artifact Ratio,SAR)评价指标上均获得更佳的表现。 展开更多
关键词 深度神经网络 语音分离 卷积神经网络 特征融合 多任务学习
在线阅读 下载PDF
基于轻量级全连接张量映射网络的高光谱图像分类方法
3
作者 林知心 郑玉棒 +2 位作者 马天宇 王蕊 李恒超 《电子学报》 EI CAS CSCD 北大核心 2024年第10期3541-3551,共11页
近年来,基于卷积神经网络的深度学习模型已经在高光谱图像分类领域取得优异表现.然而,模型性能的提升通常依赖于更深、更宽的网络结构,导致参数量和计算量增长,从而限制了模型在机载或星载载荷中的实际部署.为此,本文提出基于轻量级全... 近年来,基于卷积神经网络的深度学习模型已经在高光谱图像分类领域取得优异表现.然而,模型性能的提升通常依赖于更深、更宽的网络结构,导致参数量和计算量增长,从而限制了模型在机载或星载载荷中的实际部署.为此,本文提出基于轻量级全连接张量映射网络的高光谱图像分类方法.根据全连接张量网络分解的映射思想以及高光谱图像“图谱合一”的结构特点,本文设计两种张量映射卷积单元,通过使用多个具有全连接结构的小尺寸卷积核代替原始卷积核,降低了卷积层的时间和空间复杂度.此外,基于新单元构建残差双分支张量模块.双分支结构共享同一组权重参数,并采用通道分割操作减少特征通道数,提升特征提取过程的实时性.本文所提模型通过使用新单元和新模块充分挖掘高光谱图像的局部空谱信息和全局光谱信息,有效提高了分类性能并减少硬件资源消耗.在三个常用高光谱图像数据集上的实验结果表明,所提模型相较于其他现有工作具有更高的分类性能以及更低的参数量和计算量. 展开更多
关键词 高光谱图像分类 模型压缩 连接张量网络分解 卷积神经网络 张量神经网络 轻量卷积模块
在线阅读 下载PDF
全卷积神经网络与全连接条件随机场中的左心室射血分数精准计算 被引量:4
4
作者 刘晓鸣 雷震 +4 位作者 何刊 张惠茅 郭树旭 张歆东 李雪妍 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第3期431-438,共8页
左心室射血分数是临床上用于衡量心脏健康的一项重要指标.为提高左心室分割和射血分数计算的精度,提出一种基于改进的全卷积神经网络和全连接条件随机场的方法.首先利用预训练的全卷积神经网络模型对心脏核磁共振影像进行左心室分割并... 左心室射血分数是临床上用于衡量心脏健康的一项重要指标.为提高左心室分割和射血分数计算的精度,提出一种基于改进的全卷积神经网络和全连接条件随机场的方法.首先利用预训练的全卷积神经网络模型对心脏核磁共振影像进行左心室分割并输出概率图;之后采用3D全连接条件随机场对概率图进行后处理,完成像素级的精准密度预测;最后对左心室分割结果进行3D重建,并计算左心室舒张末期容积和收缩末期容积,进而计算出射血分数.实验结果表明,该方法能够实现左心室射血分数的精确且高效的计算,对左心室射血分数的平均预测误差为4.67%,各步骤耗时短. 展开更多
关键词 左心室射血分数计算 深度学习 卷积神经网络 连接条件随机场
在线阅读 下载PDF
基于跨通道交叉融合和跨模块连接的轻量级卷积神经网络 被引量:1
5
作者 陈力 丁世飞 于文家 《计算机应用》 CSCD 北大核心 2020年第12期3451-3457,共7页
针对传统卷积神经网络参数量过多、计算复杂度高的问题,提出了基于跨通道交叉融合和跨模块连接的轻量级卷积神经网络架构C-Net。首先,提出了跨通道交叉融合的方法,它在一定程度上克服了分组卷积中各分组之间存在缺乏信息流动的问题,简... 针对传统卷积神经网络参数量过多、计算复杂度高的问题,提出了基于跨通道交叉融合和跨模块连接的轻量级卷积神经网络架构C-Net。首先,提出了跨通道交叉融合的方法,它在一定程度上克服了分组卷积中各分组之间存在缺乏信息流动的问题,简单高效地实现了不同分组之间的信息通信;其次,提出了一种跨模块连接的方法,它克服了传统轻量级架构中各基本构建块之间彼此独立的缺点,实现了同一阶段内具有相同分辨率特征映射的不同模块之间的信息融合,从而增强了特征提取能力;最后,基于提出的两种方法设计了一种新型的轻量级卷积神经网络架构C-Net。C-Net在Food101数据集上的准确率为69.41%,在Caltech256数据集上的准确率为63.93%。实验结果表明,与目前先进的轻量级卷积神经网络模型相比,C-Net降低了存储开销和计算复杂度。在Cifar10数据集上的消融实验验证了所提出的两种方法的有效性。 展开更多
关键词 卷积神经网络 轻量级 分组卷积 跨通道交叉融合 快捷连接 跨模块连接
在线阅读 下载PDF
基于全卷积神经网络的林木图像分割 被引量:9
6
作者 黄英来 刘亚檀 任洪娥 《计算机工程与应用》 CSCD 北大核心 2019年第4期219-224,共6页
针对传统方法进行图像分割易受噪声影响问题,提出了一种基于全卷积神经网络的林木图像分割方法。该方法不需要对图像进行预处理,利用上池化和反卷积层恢复图像分辨率,采用跳跃连接降低网络复杂度,同时避免了梯度消失问题,使用Dropout正... 针对传统方法进行图像分割易受噪声影响问题,提出了一种基于全卷积神经网络的林木图像分割方法。该方法不需要对图像进行预处理,利用上池化和反卷积层恢复图像分辨率,采用跳跃连接降低网络复杂度,同时避免了梯度消失问题,使用Dropout正则化随机激活网络隐藏单元以防止过拟合,后端结合全连接的条件随机场以恢复对象边缘的细节信息,进一步优化分割结果。该模型能够在林木图像上实现良好的分割。 展开更多
关键词 卷积神经网络 跳跃连接 条件随机场 图像分割
在线阅读 下载PDF
基于双流全卷积网络的驾驶员姿态估计方法 被引量:5
7
作者 王彬 赵作鹏 《江苏大学学报(自然科学版)》 CAS 北大核心 2022年第2期161-168,共8页
针对现有姿态估计方法在驾驶室复杂环境条件下发生的非目标误检测和检测精度低的问题,提出了一种基于双流全卷积网络的驾驶员姿态估计方法.该方法通过建立2条独立的FCN(fully convolutional network)分支,分别对关键点坐标及关键点间的... 针对现有姿态估计方法在驾驶室复杂环境条件下发生的非目标误检测和检测精度低的问题,提出了一种基于双流全卷积网络的驾驶员姿态估计方法.该方法通过建立2条独立的FCN(fully convolutional network)分支,分别对关键点坐标及关键点间的连接信息进行预测,同时在2个分支中构建沙漏状的网络结构,增强了网络提取关键信息的能力.为了进一步提高模型的特征提取能力,将浅层与深层网络得到的特征图进行融合.为了验证所提方法的检测效果,采用COCO(common objects in context)数据集和DDS(driver′s driving situation)数据集进行验证.试验结果表明:该方法在COCO数据集和DDS数据集上的检测平均精度分别达到64.5%和78.4%,优于其他3种对比算法;该方法可以提高驾驶员人体姿态的检测精度,具有较好的鲁棒性. 展开更多
关键词 驾驶员 姿态估计 特征融合 卷积网络 迁移学习
在线阅读 下载PDF
特征融合型卷积神经网络的语义分割 被引量:4
8
作者 马冬梅 贺三三 +1 位作者 杨彩锋 严春满 《计算机工程与应用》 CSCD 北大核心 2020年第10期193-198,共6页
语义分割是对图像中的不同目标进行像素级的分割和分类,是图像处理领域中的一项重要研究,应用十分广泛。深度卷积神经网络在近几年的机器视觉研究中取得了显著成效。针对密集预测的语义分割任务,提出了一种基于VGGNet网络的方法。该方... 语义分割是对图像中的不同目标进行像素级的分割和分类,是图像处理领域中的一项重要研究,应用十分广泛。深度卷积神经网络在近几年的机器视觉研究中取得了显著成效。针对密集预测的语义分割任务,提出了一种基于VGGNet网络的方法。该方法在深层特征图像中融合了浅层信息,且采用并行的不同采样率的空洞卷积进行特征提取与融合,更有效地提取不同层的特征和上下文信息,从而提高语义分割精度。采用全连接条件随机场优化图像边界,进一步提高语义分割的精度。该方法在PASCAL VOC 2012语义分割任务测试集中取得了71.3%mIOU的结果,优于之前基于VGGNet的主要经典方法。 展开更多
关键词 语义分割 卷积神经网络 机器视觉 密集预测 连接条件随机场
在线阅读 下载PDF
多局部残差连接注意网络的图像去模糊 被引量:2
9
作者 陈清江 王巧莹 《应用光学》 CAS 北大核心 2023年第2期337-344,共8页
针对现有的基于卷积神经网络的图像去模糊算法存在图像纹理细节恢复不清晰的问题,提出了一种基于多局部残差连接注意网络的图像去模糊算法。首先,采用一个卷积层进行浅层特征提取;其次,设计了一种新的基于残差连接和并行注意机制的多局... 针对现有的基于卷积神经网络的图像去模糊算法存在图像纹理细节恢复不清晰的问题,提出了一种基于多局部残差连接注意网络的图像去模糊算法。首先,采用一个卷积层进行浅层特征提取;其次,设计了一种新的基于残差连接和并行注意机制的多局部残差连接注意模块,用于消除图像模糊并提取上下文信息;再次,采用一个基于扩张卷积的成对连接模块进行细节恢复;最后,利用一个卷积层重建清晰图像。实验结果表明:在GoPro数据集上的PSNR(peak signal to noise ratio)和SSIM(structure similarity)分别为31.83 dB、0.9275,在定性和定量两方面都表明所提方法能够有效地恢复模糊图像的纹理细节,网络性能优于对比方法。 展开更多
关键词 卷积神经网络 注意机制 局部残差连接 扩张卷积
在线阅读 下载PDF
基于局部和全局特征融合的显著性检测 被引量:1
10
作者 张卫国 马静瑞 《计算机工程与设计》 北大核心 2020年第6期1714-1718,共5页
为解决现有方法过分强调局部对比度而忽略图像全局特征的问题,提出一种局部和全局特征融合的显著性检测模型。基于多种图像先验信息以及局部对比度进行显著值计算,利用多尺度融合策略得到局部显著图;利用全卷积神经网络对图像进行全局... 为解决现有方法过分强调局部对比度而忽略图像全局特征的问题,提出一种局部和全局特征融合的显著性检测模型。基于多种图像先验信息以及局部对比度进行显著值计算,利用多尺度融合策略得到局部显著图;利用全卷积神经网络对图像进行全局搜索估计图像像素的显著性概率,将其与局部显著图进行融合得到最终的显著图。在3个公共数据集上与5种经典方法进行对比评测,实验结果表明,该方法具有更高的F-measure和更低的MAE值。 展开更多
关键词 显著性检测 局部对比度 局特征 先验信息 卷积神经网络
在线阅读 下载PDF
全卷积神经网络的字符级文本分类方法 被引量:11
11
作者 张曼 夏战国 +1 位作者 刘兵 周勇 《计算机工程与应用》 CSCD 北大核心 2020年第5期166-172,共7页
传统卷积神经网络文本分类模型全连接层参数过多易引发过拟合问题,为此,将图像分割中的全卷积思想首次引入字符级文本分类任务中,不仅避免了过拟合问题,而且通过卷积层替换全连接层减少了参数数量,从而加快了模型收敛速度。文本分类问... 传统卷积神经网络文本分类模型全连接层参数过多易引发过拟合问题,为此,将图像分割中的全卷积思想首次引入字符级文本分类任务中,不仅避免了过拟合问题,而且通过卷积层替换全连接层减少了参数数量,从而加快了模型收敛速度。文本分类问题中单词、短语等层面的处理方式存在获取文本信息不充分的问题。使用字符级全卷积神经网络进行文本分类,充分获取文本信息,并在卷积池化层后添加局部响应归一化层(LRN),提高了模型的总体性能。通过使用多指标在测试数据集中进行模型评估,充分验证了该模型的有效性,与其他模型相比,提出的模型在二分类与多分类任务中具有更好的分类性能。 展开更多
关键词 文本分类 卷积神经网络 字符级 局部响应归一化层(LRN) 特征提取
在线阅读 下载PDF
基于残差卷积神经网络的开关柜局部放电模式识别 被引量:22
12
作者 黄雪莜 熊俊 +4 位作者 张宇 刘辉 陈鹭 孟祥麟 江秀臣 《中国电力》 CSCD 北大核心 2021年第2期44-51,共8页
传统的开关柜局部放电模式识别方法缺乏一定的泛化性能且识别准确率低,难以在实际工程中应用。提出了一种基于残差卷积神经网络的开关柜局部放电模式识别方法,通过在网络中加入残差模块以解决随着网络层数加深导致准确度饱和后出现退化... 传统的开关柜局部放电模式识别方法缺乏一定的泛化性能且识别准确率低,难以在实际工程中应用。提出了一种基于残差卷积神经网络的开关柜局部放电模式识别方法,通过在网络中加入残差模块以解决随着网络层数加深导致准确度饱和后出现退化的问题,并综合利用开关柜局部放电数据的浅层与深层特征融合学习,实现模式识别。通过开关柜不同绝缘缺陷类别的局部放电模拟实验与配电站现场检测,构建了开关柜局部放电数据样本库,并进行了实验分析。实验结果表明:所提方法的识别正确率达96.06%,相比传统识别方法至少提高了20.22%,且随着训练集样本数量的增加,识别率有更大提升。综合使用特征层融合模块和残差模块,显著提升了模型的泛化性能,更适用于实际工程。 展开更多
关键词 卷积神经网络 残差模块 特征层融合 局部放电 模式识别
在线阅读 下载PDF
基于三维卷积神经网络的遥感影像变化检测 被引量:2
13
作者 吴国盼 王蒙蒙 +1 位作者 李辛莹 高宇翔 《遥感信息》 CSCD 北大核心 2024年第4期61-67,共7页
随着卫星传感器技术和深度学习技术的蓬勃发展,基于深度学习的变化检测研究已成为遥感变化检测领域中的主流方法。针对现有深度学习方法特征提取和融合不充分的问题,提出了一种基于三维卷积神经网络的遥感影像变化检测方法。在特征编码... 随着卫星传感器技术和深度学习技术的蓬勃发展,基于深度学习的变化检测研究已成为遥感变化检测领域中的主流方法。针对现有深度学习方法特征提取和融合不充分的问题,提出了一种基于三维卷积神经网络的遥感影像变化检测方法。在特征编码阶段,首先利用三维卷积的内部融合特性同时提取和融合双时相影像特征。在特征解码阶段,为有效利用影像特征的全尺度信息,采用全尺度跳跃连接机制将不同尺度的特征信息在时间维度进行结合,最终产生具有高精度的变化结果。实验结果表明,该方法在两个基准数据集上的精度均显著优于其他先进的深度学习变化检测方法。 展开更多
关键词 变化检测 三维卷积 时间维度 特征融合 尺度连接
在线阅读 下载PDF
基于局部分离与多尺度融合的图像超分辨率重建 被引量:1
14
作者 杨郅树 梁佳楠 +2 位作者 曹永军 钟震宇 何永伦 《计算机工程》 CAS CSCD 北大核心 2024年第7期314-323,共10页
目前基于深度学习的超分辨率重建网络存在卷积运算冗余、图像重建信息不完整、模型参数庞大等问题,限制了其在边缘设备上的适用性。针对上述问题,提出一种轻量级的局部分离与多尺度融合图像超分辨率重建网络,该网络利用局部卷积对图像... 目前基于深度学习的超分辨率重建网络存在卷积运算冗余、图像重建信息不完整、模型参数庞大等问题,限制了其在边缘设备上的适用性。针对上述问题,提出一种轻量级的局部分离与多尺度融合图像超分辨率重建网络,该网络利用局部卷积对图像进行特征提取,通过分离部分图像通道,在减少网络冗余计算的同时保持图像重建的质量。设计一种多尺度特征融合模块,在空间维度学习长依赖特征,并采用一个通道注意力增强组在空间维度捕获空间特征,减少图像重建信息的丢失,有效恢复图像的细节纹理。由于多尺度特征融合模块更多地是从全局角度进行特征提取融合,因此构建一种高效反残差模块补充网络的局部上下文信息提取能力。在Set5、Set14、B100、Urban100、Manga109这5个基准数据集上的实验结果表明,当尺度因子为2、3、4倍时,该网络的参数量分别为373000、382000、394000,FLOPs分别为84.0×10^(9)、38.1×10^(9)、22.1×10^(9)。与VDSR、IMDN、RFDN、RLFN等网络相比,该网络在较少网络参数的情况下,能够保证图像重建效果。 展开更多
关键词 超分辨率重建 轻量级网络 局部卷积 多尺度融合 长依赖关系
在线阅读 下载PDF
融合全局与随机局部特征的鸟类姿态识别模型 被引量:6
15
作者 林梦翔 林志玮 +1 位作者 黄秀萍 洪思弟 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第4期581-591,共11页
为了高效地进行鸟类姿态分类,提出一种基于全局与随机局部特征融合的鸟类姿态识别模型.首先利用融合多分辨率的网络提取鸟类姿态全局特征;然后于网络中浅层与深层的高分辨率特征引入随机定位模块,即根据随机抽取的特征图求取最大值位置... 为了高效地进行鸟类姿态分类,提出一种基于全局与随机局部特征融合的鸟类姿态识别模型.首先利用融合多分辨率的网络提取鸟类姿态全局特征;然后于网络中浅层与深层的高分辨率特征引入随机定位模块,即根据随机抽取的特征图求取最大值位置,形成包围盒裁剪原图;再将裁剪的局部图片送入子分类网络提取鸟类姿态局部特征;最后将全局和随机局部特征进行融合,并采用融合全局损失和局部损失的多损失策略进行网络调整,构建一种融合全局与随机局部特征的鸟类姿态识别模型.对CUB200-2011中存在完整单种姿态的鸟类图片进行整理汇总得到包含蹲伏、飞翔、游水和站立4种姿态的鸟类姿态数据集,基于该数据集进行实验的结果表明,所提模型的分类精度优于主流卷积神经网络框架,达到96.1%;对随机定位模块及其内部是否随机、分组情况和多损失策略等进行消融实验的结果表明,引入随机定位模块和多损失策略能够提高识别正确率,证明了随机定位模块和多损失策略的有效性. 展开更多
关键词 鸟类姿态识别 卷积神经网络 随机定位 特征融合 局特征 局部特征
在线阅读 下载PDF
基于深度融合卷积神经网络的图像边缘检测 被引量:4
16
作者 石昌友 孙强 +1 位作者 卢建平 周静 《现代电子技术》 2022年第24期141-144,共4页
图像边缘检测是数字图像分析领域的一项重要研究内容。受图像拍摄条件、图像内容自身复杂性、图像内容与背景接近程度等多种因素的影响,图像的边缘线检测容易发生漏检、误检。针对此问题,文中提出一种卷积神经网络结构算法,以提升图像... 图像边缘检测是数字图像分析领域的一项重要研究内容。受图像拍摄条件、图像内容自身复杂性、图像内容与背景接近程度等多种因素的影响,图像的边缘线检测容易发生漏检、误检。针对此问题,文中提出一种卷积神经网络结构算法,以提升图像边缘检测效果和质量。首先,对输入图像提取出五类不同层次水平、尺度的卷积特征;然后,按照相邻尺度将每三类卷积特征分成一组,通过逐步转置的方式依次尺寸对齐再融合;再对三组融合结果特征进行二次深度融合;最后,基于融合卷积特征并运用卷积操作实现边缘线检测,采用指标Optimal Dataset Scale(ODS)、Optimal Image Scale(OIS)、Average Precision(AP)度量图像边缘检测的质量。结果表明:在BSDS500数据集上,ODS、OIS、AP三个指标的得分分别为0.815,0.832,0.851;在NYUD数据集上,得分分别为0.7620,0.7700,0.7819。与其他同类算法相比,所提算法指标分值更高,能够提升图像边缘检测质量。 展开更多
关键词 图像边缘检测 卷积神经网络 卷积特征提取 图像分析 深度融合 跨越连接
在线阅读 下载PDF
基于局部特征匹配的井下管柱图像智能拼接融合技术
17
作者 汤清源 杜宇成 +4 位作者 叶胜 房伟 梁建龙 袁翔 刘浩浩 《天然气工业》 EI CAS CSCD 北大核心 2024年第9期190-198,共9页
井下电视成像测井可以直观地监测井下管柱是否异常,但采集的井下管柱图像存在纹理低、光照不足、背景重复等问题,传统的尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)等算法很难稳定地检测出高质量的特征点,导致图像拼接... 井下电视成像测井可以直观地监测井下管柱是否异常,但采集的井下管柱图像存在纹理低、光照不足、背景重复等问题,传统的尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)等算法很难稳定地检测出高质量的特征点,导致图像拼接融合鲁棒性差。为此,基于局部特征匹配的思路,先利用反向像素映射算法将管柱图像展开成平面图,并对径向误差进行精确修正,再利用卷积神经网络提取局部特征,利用注意力机制在粗略层面上建立像素级匹配,最后引入最佳拼接线和平滑函数来消除拼接误差,实现了井下管柱大尺度图像的智能拼接融合。研究结果表明:(1)基于局部特征匹配的井下管柱图像智能拼接融合技术,通过图像预处理、特征匹配和图像融合,解决了井下管柱图像拼接融合的稳定性问题;(2)图像智能融合质量的平滑权重因子(k)为0.05时融合效果最佳,k值越小融合图像拼接缝越明显,k值过大则容易在重叠区域产生重影;(3)通过计算待拼接图像的最佳拼接线来消除角度倾斜带来的误差,达到了稳定智能拼接融合的目的;(4)与SIFT算法相比,该算法能检测出的特征点数量平均增加了74.6%,平均智能匹配正确率由83.9%增加到了98.8%。结论认为,该算法检测到的特征点数量和正确率都得到了明显提升,智能融合图像的结构相似性、峰值信噪比和均方误差等指标均优于传统算法,为解决井下管柱探测难题提供了新思路和技术手段。 展开更多
关键词 井下管柱图像 局部特征匹配 特征点 智能图像拼接 图像融合 图像预处理 卷积神经网络 结构相似性
在线阅读 下载PDF
基于卷积神经网络的轮胎缺陷X光图像分类 被引量:17
18
作者 崔雪红 刘云 +1 位作者 王传旭 李辉 《电子测量技术》 2017年第5期168-173,共6页
轮胎缺陷的类型直接决定着轮胎是否为残次品或废品,对于轮胎定级具有重要参考价值,探索高性能的轮胎缺陷分类方法至关重要。采用卷积神经网络技术,提出一个端到端的图像自动分类算法。首先,从国内某轮胎生产线上通过现场运行的轮胎X光... 轮胎缺陷的类型直接决定着轮胎是否为残次品或废品,对于轮胎定级具有重要参考价值,探索高性能的轮胎缺陷分类方法至关重要。采用卷积神经网络技术,提出一个端到端的图像自动分类算法。首先,从国内某轮胎生产线上通过现场运行的轮胎X光射线缺陷检测系统采集胎侧异物缺陷、胎冠异物缺陷、气泡缺陷、胎冠劈缝、胎侧开根5种最常见缺陷类型和1种正常胎侧图像作为分类目标,并且依据缺陷图像的缺陷尺度,将每幅图像缩放到127×127像素的统一大小;然后,设计含有5个卷积层、3个池化层、3个全连接层的网络结构。最后,用采集的缺陷样本对所设计的深度网络进行训练学习与测试。并将该算法和大量传统分类算法进行实验对比,取得更好的分类效果,平均测试识别率高达96.51%。 展开更多
关键词 卷积神经网络 池化 轮胎缺陷 图象分类 连接
在线阅读 下载PDF
基于双残差超密集网络的多模态医学图像融合 被引量:6
19
作者 王丽芳 王蕊芳 +3 位作者 蔺素珍 秦品乐 高媛 张晋 《计算机科学》 CSCD 北大核心 2021年第2期160-166,共7页
针对基于残差网络和密集网络的图像融合方法存在网络中间层的部分有用信息丢失和融合图像细节不清晰的问题,提出了基于双残差超密集网络(Dual Residual Hyper-Densely Networks,DRHDNs)的多模态医学图像融合方法。DRHDNs分为特征提取和... 针对基于残差网络和密集网络的图像融合方法存在网络中间层的部分有用信息丢失和融合图像细节不清晰的问题,提出了基于双残差超密集网络(Dual Residual Hyper-Densely Networks,DRHDNs)的多模态医学图像融合方法。DRHDNs分为特征提取和特征融合两部分。特征提取部分通过将超密集连接与残差学习相结合,构造出双残差超密集块,用于提取特征,其中超密集连接不仅发生在同一路径的层之间,还发生在不同路径的层之间,这种连接使特征提取更充分,细节信息更丰富,并且对源图像进行了初步的特征融合。特征融合部分则进行最终的融合。通过实验将其与另外6种图像融合方法对4组脑部图像进行了融合比较,并根据4种评价指标进行了客观比较。结果显示,DRHDNs在保留细节、对比度和清晰度等方面都有很好的表现,其融合图像细节信息丰富并且清晰,便于疾病的诊断。 展开更多
关键词 多模态 医学图像融合 双残差学习 超密集连接 卷积网络(CNN)
在线阅读 下载PDF
基于改进卷积神经网络的多标记分类算法 被引量:9
20
作者 余鹰 王乐为 +2 位作者 吴新念 伍国华 张远健 《智能系统学报》 CSCD 北大核心 2019年第3期566-574,共9页
良好的特征表达是提高模型性能的关键,然而当前在多标记学习领域,特征表达依然采用人工设计的方式,所提取的特征抽象程度不高,包含的可区分性信息不足。针对此问题,提出了基于卷积神经网络的多标记分类模型 ML_DCCNN,该模型利用卷积神... 良好的特征表达是提高模型性能的关键,然而当前在多标记学习领域,特征表达依然采用人工设计的方式,所提取的特征抽象程度不高,包含的可区分性信息不足。针对此问题,提出了基于卷积神经网络的多标记分类模型 ML_DCCNN,该模型利用卷积神经网络强大的特征提取能力,自动学习能刻画数据本质的特征。为了解决深度卷积神经网络预测精度高,但训练时间复杂度不低的问题,ML_DCCNN利用迁移学习方法缩减模型的训练时间,同时改进卷积神经网络的全连接层,提出双通道神经元,减少全连接层的参数量。实验表明,与传统的多标记分类算法以及已有的基于深度学习的多标记分类模型相比,ML_DCCNN保持了较高的分类精度并有效地提高了分类效率,具有一定的理论与实际价值。 展开更多
关键词 多标记学习 卷积神经网络 迁移学习 连接 特征表达 多标记分类 深度学习 损失函数
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部