超短期电力负荷预测作为电力系统的基本组成,能为生产调度计划的制定提供重要依据。然而,电力负荷具有非线性、时变性和不确定性,充分挖掘其潜在特征并分别预测,是提升预测准确性的关键。提出一种基于自适应局部迭代滤波(adaptive local...超短期电力负荷预测作为电力系统的基本组成,能为生产调度计划的制定提供重要依据。然而,电力负荷具有非线性、时变性和不确定性,充分挖掘其潜在特征并分别预测,是提升预测准确性的关键。提出一种基于自适应局部迭代滤波(adaptive local iterative filtering,ALIF)的BiGRU-Attention-XGBoost电力负荷组合预测模型。该模型基于ALIF-SE实现将历史负荷序列分解重组为周期序列、波动序列和趋势序列;通过Attention机制对BiGRU模型进行改进,并结合XGBoost模型构建基于时变权重组合的电力负荷预测模型。实验分析表明,输入模型数据经过ALIF-SE处理后预测精度有明显提升;所提组合模型在工作日和节假日均具有较好的预测效果,预测误差大部分在5%以下;通过在不同负荷数据集下进行实验对比,验证了所提预测方法的可迁移性。实验结果证明,所提模型具有有效性、准确性和可行性。展开更多
已有的LRFU(Least Recency Frequency Used)自适应算法在实际应用中根据经验调整λ值,缺乏对访问局部性强弱的量化分析,因而其可适用的访问模式有限.该文首先建立基于K阶马尔可夫链(K→∞)的局部性定量分析模型,在访问过程中根据统计信...已有的LRFU(Least Recency Frequency Used)自适应算法在实际应用中根据经验调整λ值,缺乏对访问局部性强弱的量化分析,因而其可适用的访问模式有限.该文首先建立基于K阶马尔可夫链(K→∞)的局部性定量分析模型,在访问过程中根据统计信息实时量化局部性特征.然后以此分析模型为基础设计自适应替换算法LA-LRFU(Locality-Aware LRFU),随着访问特征的变化动态调整参数λ.最后应用Trace仿真对算法进行测试.实验结果显示,针对多种访问模式,LA-LRFU均可显著提高Cache命中率;在由多种访问模式构成的具体访问过程中,LA-LRFU能比现有的各类LRFU自适应算法更合理地调整参数λ.展开更多
齿轮箱的健康监测对于机械传动系统以及机械设备的健康管理极为重要。针对变工况齿轮箱在使用过程中的健康状态较难监测的情况,提出一种基于高斯混合模型(Gaussian mixture model,GMM)和局部分布差异(local distribution difference,LDD...齿轮箱的健康监测对于机械传动系统以及机械设备的健康管理极为重要。针对变工况齿轮箱在使用过程中的健康状态较难监测的情况,提出一种基于高斯混合模型(Gaussian mixture model,GMM)和局部分布差异(local distribution difference,LDD)的自适应动态阈值健康监测方法。首先,对原始振动信号进行处理,从处理信号中提取特征,并依据单调性排序;使用核主成分分析对单调性较好的特征进行降维,构建退化趋势。再使用健康数据训练高斯混合模型,确定模型参数,并计算贝叶斯推断的距离(Bayesian inference distance,BID)。最后使用LDD动态调整滑动窗口大小并结合核密度估计(kernel density estimation,KDE)建立自适应阈值,对齿轮箱的健康状态进行监测。通过实验对比分析表明:本方法的预测准确性为99%,假警率为0.05%,灵敏度为98%,相较于其他方法有较大优势。展开更多
文摘超短期电力负荷预测作为电力系统的基本组成,能为生产调度计划的制定提供重要依据。然而,电力负荷具有非线性、时变性和不确定性,充分挖掘其潜在特征并分别预测,是提升预测准确性的关键。提出一种基于自适应局部迭代滤波(adaptive local iterative filtering,ALIF)的BiGRU-Attention-XGBoost电力负荷组合预测模型。该模型基于ALIF-SE实现将历史负荷序列分解重组为周期序列、波动序列和趋势序列;通过Attention机制对BiGRU模型进行改进,并结合XGBoost模型构建基于时变权重组合的电力负荷预测模型。实验分析表明,输入模型数据经过ALIF-SE处理后预测精度有明显提升;所提组合模型在工作日和节假日均具有较好的预测效果,预测误差大部分在5%以下;通过在不同负荷数据集下进行实验对比,验证了所提预测方法的可迁移性。实验结果证明,所提模型具有有效性、准确性和可行性。
文摘已有的LRFU(Least Recency Frequency Used)自适应算法在实际应用中根据经验调整λ值,缺乏对访问局部性强弱的量化分析,因而其可适用的访问模式有限.该文首先建立基于K阶马尔可夫链(K→∞)的局部性定量分析模型,在访问过程中根据统计信息实时量化局部性特征.然后以此分析模型为基础设计自适应替换算法LA-LRFU(Locality-Aware LRFU),随着访问特征的变化动态调整参数λ.最后应用Trace仿真对算法进行测试.实验结果显示,针对多种访问模式,LA-LRFU均可显著提高Cache命中率;在由多种访问模式构成的具体访问过程中,LA-LRFU能比现有的各类LRFU自适应算法更合理地调整参数λ.
文摘齿轮箱的健康监测对于机械传动系统以及机械设备的健康管理极为重要。针对变工况齿轮箱在使用过程中的健康状态较难监测的情况,提出一种基于高斯混合模型(Gaussian mixture model,GMM)和局部分布差异(local distribution difference,LDD)的自适应动态阈值健康监测方法。首先,对原始振动信号进行处理,从处理信号中提取特征,并依据单调性排序;使用核主成分分析对单调性较好的特征进行降维,构建退化趋势。再使用健康数据训练高斯混合模型,确定模型参数,并计算贝叶斯推断的距离(Bayesian inference distance,BID)。最后使用LDD动态调整滑动窗口大小并结合核密度估计(kernel density estimation,KDE)建立自适应阈值,对齿轮箱的健康状态进行监测。通过实验对比分析表明:本方法的预测准确性为99%,假警率为0.05%,灵敏度为98%,相较于其他方法有较大优势。