期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
基于多扰动的局部自适应软子空间聚类融合算法 被引量:1
1
作者 王丽娟 郝志峰 +1 位作者 蔡瑞初 温雯 《计算机科学》 CSCD 北大核心 2014年第2期240-244,共5页
提出基于随机初始化、参数扰动和特征子集映射的多扰动的局部自适应软子空间聚类(LAC)融合算法(MLACE)。MLACE具有以下特点:(i)多扰动融合:从初始化、参数和特征子集等不同侧面,探测数据内部结构,使之相互融合,从而达到改善聚类正确性... 提出基于随机初始化、参数扰动和特征子集映射的多扰动的局部自适应软子空间聚类(LAC)融合算法(MLACE)。MLACE具有以下特点:(i)多扰动融合:从初始化、参数和特征子集等不同侧面,探测数据内部结构,使之相互融合,从而达到改善聚类正确性的目的;(ii)融合信息提升:根据LAC算法输出的子空间权重矩阵,定义数据属于每一类的概率,形成提升的融合信息;(iii)融合一致性函数改进:融合信息的形式由0/1二值信息转换成[0,1]实值信息,因此,一致性函数采用了性能较优的实数值融合算法Fast global K-means来进一步改善融合正确性。实验选取2个仿真数据库和5个UCI数据库测试MLACE的聚类正确性,实验结果表明,MLACE聚类正确性优于K-means、LAC、基于参数扰动LAC融合算法(P-MLACE)。 展开更多
关键词 融合 空间 局部自适应软子空间聚类 多扰动
在线阅读 下载PDF
基于自适应加权共识自表示的多视图子空间聚类
2
作者 李永 张维强 《吉林大学学报(理学版)》 北大核心 2025年第2期513-527,共15页
针对如何充分融合多视图数据的互补性和多样性信息以提高聚类性能的问题,提出一种基于自适应加权共识自表示的多视图子空间聚类模型.首先,引入稀疏互斥性学习视图特定的稀疏自表示矩阵,再利用自适应加权学习多视图共识自表示矩阵以融合... 针对如何充分融合多视图数据的互补性和多样性信息以提高聚类性能的问题,提出一种基于自适应加权共识自表示的多视图子空间聚类模型.首先,引入稀疏互斥性学习视图特定的稀疏自表示矩阵,再利用自适应加权学习多视图共识自表示矩阵以融合各视图所学到的自表示;其次,将多视图共识矩阵与聚类指示矩阵的学习整合到一个统一的优化模型,使自表示学习与聚类达到相互促进的效果;最后,在6个常用的多视图数据集上进行实验,并与9种相关方法进行对比.实验结果表明,该方法的信息融合效果明显,聚类效果有提升. 展开更多
关键词 多视图空间 稀疏表示 自表示 自适应加权学习
在线阅读 下载PDF
基于非局部信息和子空间的模糊C有序均值聚类的图像分割算法
3
作者 陈阳 黄成泉 +3 位作者 覃小素 彭家磊 雷欢 周丽华 《计算机辅助设计与图形学学报》 北大核心 2025年第3期506-518,共13页
针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图... 针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图像中给定的相似邻域结构的像素提取当前像素的非局部空间信息;其次,计算每个像素的典型性,并对其进行排序,在每次迭代中更新像素的典型性,提高像素聚类的准确性,解决在聚类过程中存在相似类导致的误分类问题;最后,引入子空间聚类概念,为图像不同维度分配适当的权重,提高彩色图像的分割性能.在含噪合成图像和公开数据集BSDS500,MSRA100和AID上实验结果表明,所提算法的模糊划分系数、模糊划分熵、分割精度和标准化互信息平均值分别达到了95.00%,6.66%,98.77%和95.54%,均优于对比的同类算法. 展开更多
关键词 局部空间信息 空间 模糊C有序均值 噪声图像分割 鲁棒性
在线阅读 下载PDF
基于多样性和谱嵌入的张量多视图子空间聚类
4
作者 张沙沙 王长鹏 《吉林大学学报(理学版)》 北大核心 2025年第2期499-512,共14页
针对如何有效利用多视图的多样性信息和高阶信息,并建立系数矩阵的学习过程与谱聚类之间联系的问题,提出一种基于多样性和谱嵌入的张量多视图子空间聚类算法.首先,在自表示张量部分采用张量自适应对数行列式正则化,从而能根据奇异值的... 针对如何有效利用多视图的多样性信息和高阶信息,并建立系数矩阵的学习过程与谱聚类之间联系的问题,提出一种基于多样性和谱嵌入的张量多视图子空间聚类算法.首先,在自表示张量部分采用张量自适应对数行列式正则化,从而能根据奇异值的大小自适应地选择逼近函数.其次,采用Hilbert-Schmidt独立准则衡量多样性,以确保不同视图的系数表示矩阵具有足够的多样性.再次,为避免谱聚类过程的独立进行,将其引入模型中联合学习,使低秩张量学习、多样性学习和谱嵌入学习在一个统一的框架内进行.最后,通过在5个真实数据集上与10种优秀算法进行比较,验证了该算法在提升聚类性能方面的有效性. 展开更多
关键词 多视图空间 张量自适应对数行列式 多样性 谱嵌入 Hilbert-Schmidt独立准则
在线阅读 下载PDF
自适应的软子空间聚类算法 被引量:33
5
作者 陈黎飞 郭躬德 姜青山 《软件学报》 EI CSCD 北大核心 2010年第10期2513-2523,共11页
软子空间聚类是高维数据分析的一种重要手段.现有算法通常需要用户事先设置一些全局的关键参数,且没有考虑子空间的优化.提出了一个新的软子空间聚类优化目标函数,在最小化子空间簇类的簇内紧凑度的同时,最大化每个簇类所在的投影子空间... 软子空间聚类是高维数据分析的一种重要手段.现有算法通常需要用户事先设置一些全局的关键参数,且没有考虑子空间的优化.提出了一个新的软子空间聚类优化目标函数,在最小化子空间簇类的簇内紧凑度的同时,最大化每个簇类所在的投影子空间.通过推导得到一种新的局部特征加权方式,以此为基础提出一种自适应的k-means型软子空间聚类算法.该算法在聚类过程中根据数据集及其划分的信息,动态地计算最优的算法参数.在实际应用和合成数据集上的实验结果表明,该算法大幅度提高了聚类精度和聚类结果的稳定性. 展开更多
关键词 高维数据 空间 特征加权 自适应
在线阅读 下载PDF
基于簇间距离自适应的软子空间聚类算法 被引量:6
6
作者 邱云飞 狄龙娟 《计算机工程与应用》 CSCD 北大核心 2016年第21期88-93,共6页
针对软子空间聚类过程中簇间距离(簇间的分离程度)对聚类的影响程度不确定的问题,提出了一种基于簇内紧密度和簇间距离自适应软子空间聚类算法。算法以经典的k均值聚类算法框架为基础,在最小化各个子空间簇类的簇内紧密度的同时最大化... 针对软子空间聚类过程中簇间距离(簇间的分离程度)对聚类的影响程度不确定的问题,提出了一种基于簇内紧密度和簇间距离自适应软子空间聚类算法。算法以经典的k均值聚类算法框架为基础,在最小化各个子空间簇类的簇内紧密度的同时最大化各个子空间簇类的簇间距离。并且通过推导得到新的子空间聚类中心和特征加权的计算方式,克服了软子空间聚类对输入参数敏感的缺点,实现了算法的自适应学习,并且取得了较好的聚类效果。 展开更多
关键词 自适应 簇间距离 空间 高维数据
在线阅读 下载PDF
特征加权距离与软子空间学习相结合的文本聚类新方法 被引量:22
7
作者 王骏 王士同 邓赵红 《计算机学报》 EI CSCD 北大核心 2012年第8期1655-1665,共11页
文本数据维数高、数据分布稀疏、不同类别的特征相互重叠,这为聚类分析提出了挑战.针对文本数据的这一特点,将特征加权技术与软子空间相结合,基于模糊聚类的算法框架,提出了一种适用于高维文本数据的软子空间模糊聚类新方法.首先,基于... 文本数据维数高、数据分布稀疏、不同类别的特征相互重叠,这为聚类分析提出了挑战.针对文本数据的这一特点,将特征加权技术与软子空间相结合,基于模糊聚类的算法框架,提出了一种适用于高维文本数据的软子空间模糊聚类新方法.首先,基于加权范数理论,提出了新的特征加权距离计算方法.接着,将其与软子空间学习的理论框架相结合,提出了面向模糊聚类的新的目标学习准则.通过向约束条件中引入熵指数r,从而扩展了模糊指数m的取值范围,并给出了物理解释.基于Zangwill收敛定理对算法的全局收敛性给出理论证明.实验表明,文中算法可以使软子空间学习和聚类分析同时进行,其性能比现有的相关算法有了较大的提高. 展开更多
关键词 模糊 文本 空间 特征加权距离 全局收敛性
在线阅读 下载PDF
烟花算法优化的软子空间MR图像聚类算法 被引量:12
8
作者 范虹 侯存存 +1 位作者 朱艳春 姚若侠 《软件学报》 EI CSCD 北大核心 2017年第11期3080-3093,共14页
现有的软子空间聚类算法在分割MR图像时易受随机噪声的影响,而且算法因依赖于初始聚类中心的选择而容易陷入局部最优,导致分割效果不理想.针对这一问题,提出一种基于烟花算法的软子空间MR图像聚类算法.算法首先设计一个结合界约束与噪... 现有的软子空间聚类算法在分割MR图像时易受随机噪声的影响,而且算法因依赖于初始聚类中心的选择而容易陷入局部最优,导致分割效果不理想.针对这一问题,提出一种基于烟花算法的软子空间MR图像聚类算法.算法首先设计一个结合界约束与噪声聚类的目标函数,弥补现有算法对噪声数据敏感的缺陷,并提出一种隶属度计算方法,快速、准确地寻找簇类所在子空间;然后,在聚类过程中引入自适应烟花算法,有效地平衡局部与全局搜索,弥补现有算法容易陷入局部最优的不足.EWKM,FWKM,FSC,LAC算法在UCI数据集、人工合成图像、Berkeley图像数据集以及临床乳腺MR图像、脑部MR图像上的聚类结果表明,所提出的算法不仅在UCI数据集上能够取得较好的结果,而且对图像聚类也具有较好的抗噪性能,尤其是对MR图像的聚类具有较高的精度和鲁棒性,能够较为有效地实现MR图像的分割. 展开更多
关键词 烟花算法 空间 噪声 MR图像 图像分割
在线阅读 下载PDF
高维数据流的自适应子空间聚类算法 被引量:6
9
作者 任家东 周玮玮 何海涛 《计算机科学与探索》 CSCD 2010年第9期859-864,共6页
高维数据流聚类是数据挖掘领域中的研究热点。由于数据流具有数据量大、快速变化、高维性等特点,许多聚类算法不能取得较好的聚类质量。提出了高维数据流的自适应子空间聚类算法SAStream。该算法改进了HPStream中的微簇结构并定义了候选... 高维数据流聚类是数据挖掘领域中的研究热点。由于数据流具有数据量大、快速变化、高维性等特点,许多聚类算法不能取得较好的聚类质量。提出了高维数据流的自适应子空间聚类算法SAStream。该算法改进了HPStream中的微簇结构并定义了候选簇,只在相应的子空间内计算新来数据点到候选簇质心的距离,减少了聚类时被检查微簇的数目,将形成的微簇存储在金字塔时间框架中,使用时间衰减函数删除过期的微簇;当数据流量大时,根据监测的系统资源使用情况自动调整界限半径和簇选择因子,从而调节聚类的粒度。实验结果表明,该算法具有良好的聚类质量和快速的数据处理能力。 展开更多
关键词 高维数据流 空间 数据流流量 自适应
在线阅读 下载PDF
基于结构树的高维数据流子空间自适应聚类算法 被引量:4
10
作者 肖红光 陈颖慧 巫小蓉 《小型微型计算机系统》 CSCD 北大核心 2016年第10期2206-2211,共6页
针对目前子空间聚类算法大多需要多次扫描数据流,且不能根据数据流的动态变化及时调整聚类结果的问题,提出一种基于结构树的数据流子空间自适应聚类算法.该算法通过对数据流的一次性扫描,利用改进相对熵找到区域的相关维,在对应相关维... 针对目前子空间聚类算法大多需要多次扫描数据流,且不能根据数据流的动态变化及时调整聚类结果的问题,提出一种基于结构树的数据流子空间自适应聚类算法.该算法通过对数据流的一次性扫描,利用改进相对熵找到区域的相关维,在对应相关维组成的子空间中进行网格聚类,确保了不同的簇发生在不同的子空间中,同时利用结构树保存区域划分信息,面对不同聚类请求结合回溯算法的思想及时高效地对子空间划分结果进行相应调整.通过在真实数据集和仿真数据集上的实验表明,本算法在同等甚至更小的时间代价的前提下,其聚类精度远远高于现有的子空间聚类算法,且对数据量和属性维度都具有良好的伸缩性. 展开更多
关键词 数据流 空间 结构树 自适应 相对熵值 回溯算法
在线阅读 下载PDF
不平衡数据的软子空间聚类算法 被引量:4
11
作者 程铃钫 杨天鹏 陈黎飞 《计算机应用》 CSCD 北大核心 2017年第10期2952-2957,共6页
针对受均匀效应的影响,当前K-means型软子空间算法不能有效聚类不平衡数据的问题,提出一种基于划分的不平衡数据软子空间聚类新算法。首先,提出一种双加权方法,在赋予每个属性一个特征权重的同时,赋予每个簇反映其重要性的一个簇类权重... 针对受均匀效应的影响,当前K-means型软子空间算法不能有效聚类不平衡数据的问题,提出一种基于划分的不平衡数据软子空间聚类新算法。首先,提出一种双加权方法,在赋予每个属性一个特征权重的同时,赋予每个簇反映其重要性的一个簇类权重;其次,提出一种混合型数据的新距离度量,以平衡不同类型属性及具有不同符号数目的类属型属性间的差异;第三,定义了基于双加权方法的不平衡数据子空间聚类目标优化函数,给出了优化簇类权重和特征权重的表达式。在实际应用数据集上进行了系列实验,结果表明,新算法使用的双权重方法能够为不平衡数据中的簇类学习更准确的软子空间;与现有的K-means型软子空间算法相比,所提算法提高了不平衡数据的聚类精度,在其中的生物信息学数据上可以取得近50%的提升幅度。 展开更多
关键词 空间 不平衡数据 特征权重 权重
在线阅读 下载PDF
鲁棒的特征权重自调节软子空间聚类算法 被引量:2
12
作者 支晓斌 许朝晖 《计算机应用》 CSCD 北大核心 2015年第3期770-774,共5页
针对已有的特征权重自调节软子空间(SC-FWSA)聚类算法存在对噪声敏感的问题,基于一种非欧氏距离,提出一种鲁棒的特征权重自调节软子空间(RSC-FWSA)聚类算法。RSC-FWSA在迭代过程中自适应地为数据生成一个权函数,通过计算每一类数据的加... 针对已有的特征权重自调节软子空间(SC-FWSA)聚类算法存在对噪声敏感的问题,基于一种非欧氏距离,提出一种鲁棒的特征权重自调节软子空间(RSC-FWSA)聚类算法。RSC-FWSA在迭代过程中自适应地为数据生成一个权函数,通过计算每一类数据的加权平均来计算聚类中心,这种"加权平均"使得聚类中心的估计对噪声相对不敏感,从而可以提升算法对带噪声数据和复杂结构数据的聚类精度。人工数据和真实数据上的对比性实验,验证了RSC-FWSA算法的有效性。特别是人工带噪声数据和3个真实数据:Wine,Zoo以及Breastcancer上的实验结果表明,RSC-FWSA可以显著提升原对应算法的聚类精度。RSC-FWSA具有的强鲁棒性使得该算法适用于高维带噪声和复杂结构数据的聚类问题。 展开更多
关键词 特征加权 空间 自调节机制 鲁棒 非欧氏距离
在线阅读 下载PDF
基于闵科夫斯基距离的特征权重自调节软子空间聚类算法 被引量:2
13
作者 支晓斌 许朝晖 《计算机应用研究》 CSCD 北大核心 2016年第9期2688-2692,共5页
针对特征权重自调节软子空间聚类(soft subspace clustering with feature weight self-adjustment mechanism,SC-FWSA)算法使用欧氏距离,存在对数据适应性较差的问题,将SC-FWSA算法中的欧氏距离拓展为闵科夫斯基距离(Minkowski distanc... 针对特征权重自调节软子空间聚类(soft subspace clustering with feature weight self-adjustment mechanism,SC-FWSA)算法使用欧氏距离,存在对数据适应性较差的问题,将SC-FWSA算法中的欧氏距离拓展为闵科夫斯基距离(Minkowski distance),提出一种基于闵科夫斯基距离的特征权重自调节软子空间聚类(Minkowski distance based soft subspace clustering with feature weight self-adjustment mechanism,MSC-FWSA)算法,MSC-FWSA算法有效提高了SC-FWSA算法对数据的适应性。若干真实数据集上的对比性实验验证了MSC-FWSA算法的有效性。 展开更多
关键词 特征加权 空间 闵科夫斯基距离
在线阅读 下载PDF
头脑风暴算法优化的乳腺MR图像软子空间聚类算法 被引量:1
14
作者 范虹 史肖敏 姚若侠 《计算机科学与探索》 CSCD 北大核心 2020年第8期1348-1357,共10页
传统的软子空间聚类算法在对信息量大、强度不均匀、边界模糊的乳腺MR图像进行分割时,易受初始聚类中心和噪声数据的影响,导致算法陷入局部最优,造成误分类。针对该问题,提出一种头脑风暴算法优化的乳腺MR图像软子空间聚类算法。算法首... 传统的软子空间聚类算法在对信息量大、强度不均匀、边界模糊的乳腺MR图像进行分割时,易受初始聚类中心和噪声数据的影响,导致算法陷入局部最优,造成误分类。针对该问题,提出一种头脑风暴算法优化的乳腺MR图像软子空间聚类算法。算法首先引入一个放松界约束与广义噪声聚类结合的目标函数,并用隶属度计算方法来寻找簇类所在子空间;然后在子空间聚类时用给定指数来适配聚类任务;最后在聚类过程中运用头脑风暴算法进行优化,有效地平衡局部搜索与全局搜索,从而弥补现有算法易陷入局部最优的不足。对比算法与该算法在Berkeley图像数据集上的实验结果表明该算法具有较高的精度,临床乳腺MR图像聚类的实验结果验证了所提算法的鲁棒性。 展开更多
关键词 乳腺MR图像 头脑风暴算法 空间算法 图像
在线阅读 下载PDF
数据增强和自适应自步学习的深度子空间聚类算法 被引量:2
15
作者 江雨燕 陶承凤 李平 《计算机工程》 CAS CSCD 北大核心 2023年第8期96-103,110,共9页
深度子空间聚类通过联合执行自表达特征学习和聚类分配而取得了比传统聚类更好的性能。尽管在各种应用中出现了大量的深度子空间聚类算法,但是多数算法都无法学习到精准的面向聚类的特征。针对深度子空间聚类方法在学习聚类的特征表示... 深度子空间聚类通过联合执行自表达特征学习和聚类分配而取得了比传统聚类更好的性能。尽管在各种应用中出现了大量的深度子空间聚类算法,但是多数算法都无法学习到精准的面向聚类的特征。针对深度子空间聚类方法在学习聚类的特征表示时不够精准、影响最终聚类性能等问题,提出一种改进的深度子空间聚类算法。通过随机移位和旋转对原样本进行数据增强,交替地使用增强样本来训练和优化自编码器,同时更新样本的集群分配,从而学习到更稳健的特征表示。在微调阶段,损失函数中每个增强样本的目标都是将原样本分配到集群中心,目标计算可能出错,目标错误的样本会误导自编码器网络训练,为此,利用一种无需额外超参数的自适应自步学习算法,在每次迭代中选择最具说服力的样本来提高泛化能力。在MNIST、USPS、COIL100数据集上进行实验,结果表明,该算法的准确率分别达到0.931 8、0.893 4、0.723 6,消融实验和敏感性分析结果也验证了算法的有效性。 展开更多
关键词 深度学习 空间 数据增强 自适应自步学习 编码器
在线阅读 下载PDF
基于进化多目标软子空间聚类的商业银行企业客户信用风险识别 被引量:1
16
作者 刘超 谢菁 +1 位作者 李元睿 刘宸琦 《系统工程学报》 CSCD 北大核心 2022年第2期207-218,共12页
提出了一种进化多目标软子空间聚类(EMOSSC)算法,用于提升商业银行信贷审批过程中企业客户的信用风险识别和管理水平.考虑到信用数据高维、类不平衡的特征,将聚类算法中单一的聚类有效性指标转化为了一个四目标函数,并采用进化算法对该... 提出了一种进化多目标软子空间聚类(EMOSSC)算法,用于提升商业银行信贷审批过程中企业客户的信用风险识别和管理水平.考虑到信用数据高维、类不平衡的特征,将聚类算法中单一的聚类有效性指标转化为了一个四目标函数,并采用进化算法对该函数进行优化和求解.结果表明,EMOSSC算法不仅在信用风险识别准确率、稳健性以及结果显著性等方面显著优于对比算法,还能通过对指标权重大小的排序,揭示商业银行企业客户信用风险的关键影响因素,为商业银行的信用风险识别和管理提供有益参考. 展开更多
关键词 商业银行 信用风险识别 进化多目标空间 指标重要性评价
在线阅读 下载PDF
随机学习萤火虫算法优化的模糊软子空间聚类算法 被引量:15
17
作者 张曦 李璠 +2 位作者 付雪峰 谭德坤 赵嘉 《江西师范大学学报(自然科学版)》 CAS 北大核心 2021年第2期137-144,共8页
传统软子空间聚类算法在利用局部搜索策略解决等式约束的连续非线性的变量加权问题时,易陷入局部最优导致聚类效果不佳.针对该问题,该文提出了一种随机学习萤火虫算法优化的模糊软子空间聚类算法.该算法利用具有全局搜索能力的萤火虫算... 传统软子空间聚类算法在利用局部搜索策略解决等式约束的连续非线性的变量加权问题时,易陷入局部最优导致聚类效果不佳.针对该问题,该文提出了一种随机学习萤火虫算法优化的模糊软子空间聚类算法.该算法利用具有全局搜索能力的萤火虫算法对新算法的目标函数进行优化,同时,为弥补萤火虫算法易提前收敛和寻优精度较低的缺陷,对萤火虫种群进化方式和全局最优粒子的学习方式进行了改进.新算法将权值矩阵拟化成萤火虫种群,使变量加权的等式约束变为界约束,通过萤火虫位置的更新搜索最优权重并发掘子空间中隐藏的簇类.在人工数据集、UCI标准数据集和癌症基因表达数据集上的实验结果表明:该算法具有较好的聚类效果. 展开更多
关键词 空间 变量加权 萤火虫算法
在线阅读 下载PDF
局部子空间聚类 被引量:14
18
作者 刘展杰 陈晓云 《自动化学报》 EI CSCD 北大核心 2016年第8期1238-1247,共10页
现有子空间聚类方法通常以数据全局线性为前提,将每个样本点表示为其他样本点的线性组合,因而导致常见子空间聚类方法不能很好地应用于非线性数据.为克服全局线性表示的局限,借鉴流形学习思想,用k近邻局部线性表示代替全局线性表示,与... 现有子空间聚类方法通常以数据全局线性为前提,将每个样本点表示为其他样本点的线性组合,因而导致常见子空间聚类方法不能很好地应用于非线性数据.为克服全局线性表示的局限,借鉴流形学习思想,用k近邻局部线性表示代替全局线性表示,与稀疏子空间聚类和最小二乘子空间聚类方法相结合,提出局部稀疏子空间聚类和局部最小二乘子空间聚类方法,统称局部子空间聚类方法.在双月形数据、6个图像数据集和4个基因表达数据集上进行实验,实验结果表明该方法是有效的. 展开更多
关键词 局部线性 K近邻 空间 图像数据 基因表达数据
在线阅读 下载PDF
改进多目标萤火虫优化的软子空间聚类算法及在短期负荷预测中的应用 被引量:1
19
作者 张曦 康平 +2 位作者 付雪峰 叶军 赵嘉 《计算机应用与软件》 北大核心 2022年第7期261-268,321,共9页
针对传统软子空间聚类算法因单目标优化无法准确聚类的问题,提出一种改进多目标萤火虫优化的软子空间聚类算法(IMOFASSC)。对多目标萤火虫算法的步长因子和初始吸引力进行动态定义以弥补算法易提前收敛的缺陷,并设计一种萤火虫单行随机... 针对传统软子空间聚类算法因单目标优化无法准确聚类的问题,提出一种改进多目标萤火虫优化的软子空间聚类算法(IMOFASSC)。对多目标萤火虫算法的步长因子和初始吸引力进行动态定义以弥补算法易提前收敛的缺陷,并设计一种萤火虫单行随机学习机制来提高最优解集分布的均匀性;将改进的多目标萤火虫算法运用到软子空间聚类问题中,同时优化簇内紧凑度、簇间分离度及负权值熵三个目标函数,将IMOFASSC应用到短期负荷预测中。实验结果表明,IMOFASSC不仅在低维和高维数据聚类中有较好的聚类效果,而且在短期负荷预测中具有推广应用价值。 展开更多
关键词 高维数据 空间算法 多目标优化问题 多目标萤火虫算法 短期负荷预测
在线阅读 下载PDF
面向高维特征故障数据的进化软子空间聚类算法 被引量:1
20
作者 夏虎 庄健 于德弘 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第5期115-120,共6页
针对复杂机械设备故障诊断中特征量众多且对各种故障敏感程度不同的现象,提出了采用软子空间聚类算法来实现故障的识别方法。同时,针对传统软子空间聚类易陷入局部最优,目标函数设计受限制的缺点,又提出了采用进化计算实现聚类的方法。... 针对复杂机械设备故障诊断中特征量众多且对各种故障敏感程度不同的现象,提出了采用软子空间聚类算法来实现故障的识别方法。同时,针对传统软子空间聚类易陷入局部最优,目标函数设计受限制的缺点,又提出了采用进化计算实现聚类的方法。利用同类样本在相关特征维上方差小的假设,新的目标函数能更好地评价聚类结果的质量。在该算法中,通过设计类中心和权重值的混合编码以及聚类导向搜索算子,使算法更适于聚类问题的优化,而且设计的修复算子可有效地去除不合理的聚类结果。采用5组UCI数据集、2组轴承滚珠故障数据集和3组往复式压缩机气阀故障数据集对算法进行了测试,结果表明:该算法明显好于几种的软子空间聚类算法,在Rand指标上最多可高出0.226 6,并且对2组不同工况下一级缸气阀故障可实现100%的故障识别。 展开更多
关键词 故障诊断 空间 进化算法 相关特征维
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部