基于特征提取的图像分类算法的核心问题是如何对特征进行有效编码.局部约束线性编码(Locality-constrained linear coding,LLC)因其良好的特征重构性与局部平滑稀疏性,已取得了很好的分类性能.然而,LLC编码的分类性能对编码过程中的近邻...基于特征提取的图像分类算法的核心问题是如何对特征进行有效编码.局部约束线性编码(Locality-constrained linear coding,LLC)因其良好的特征重构性与局部平滑稀疏性,已取得了很好的分类性能.然而,LLC编码的分类性能对编码过程中的近邻数k的大小比较敏感,随着k的增大,编码中的某些负值元素与正值元素的差值绝对值也可能增大,这使得LLC越来越不稳定.本文通过在LLC优化模型的目标方程中引入非负约束,提出了一种新型编码方式,称为非负局部约束线性编码(Non-negative locality-constrained linear coding,NNLLC).该模型一般采取迭代优化算法进行求解,但其计算复杂度较大.因此,本文提出两种近似非负编码算法,其编码速度与LLC一样快速.实验结果表明,在多个广泛使用的图像数据集上,相比于LLC,NNLLC编码方式不仅在分类精确率上提高了近1%~4%,而且对k的选取具有更强的鲁棒性.展开更多
为提高局部约束线性编码(locality-constrained linear coding,LLC)的效率,提出一种结合邻居匹配策略改进的LLC方法。依据输入向量的空间相关性,在采用LLC方法计算输入向量的近邻码值矩阵之前,计算输入向量与空间相邻的已编码输入向量...为提高局部约束线性编码(locality-constrained linear coding,LLC)的效率,提出一种结合邻居匹配策略改进的LLC方法。依据输入向量的空间相关性,在采用LLC方法计算输入向量的近邻码值矩阵之前,计算输入向量与空间相邻的已编码输入向量之间的欧氏距离,用其推断输入向量与码本中所有码值之间欧氏距离的上下边界,依据距离下边界判决条件跳过部分码值与输入向量的距离计算,依据距离上边界快速求解输入向量的近似近邻码值矩阵,依据LLC方法进行向量编码。图像分类实验结果表明,该方法的分类正确率高,编码耗时少。展开更多
文摘基于特征提取的图像分类算法的核心问题是如何对特征进行有效编码.局部约束线性编码(Locality-constrained linear coding,LLC)因其良好的特征重构性与局部平滑稀疏性,已取得了很好的分类性能.然而,LLC编码的分类性能对编码过程中的近邻数k的大小比较敏感,随着k的增大,编码中的某些负值元素与正值元素的差值绝对值也可能增大,这使得LLC越来越不稳定.本文通过在LLC优化模型的目标方程中引入非负约束,提出了一种新型编码方式,称为非负局部约束线性编码(Non-negative locality-constrained linear coding,NNLLC).该模型一般采取迭代优化算法进行求解,但其计算复杂度较大.因此,本文提出两种近似非负编码算法,其编码速度与LLC一样快速.实验结果表明,在多个广泛使用的图像数据集上,相比于LLC,NNLLC编码方式不仅在分类精确率上提高了近1%~4%,而且对k的选取具有更强的鲁棒性.
文摘为提高局部约束线性编码(locality-constrained linear coding,LLC)的效率,提出一种结合邻居匹配策略改进的LLC方法。依据输入向量的空间相关性,在采用LLC方法计算输入向量的近邻码值矩阵之前,计算输入向量与空间相邻的已编码输入向量之间的欧氏距离,用其推断输入向量与码本中所有码值之间欧氏距离的上下边界,依据距离下边界判决条件跳过部分码值与输入向量的距离计算,依据距离上边界快速求解输入向量的近似近邻码值矩阵,依据LLC方法进行向量编码。图像分类实验结果表明,该方法的分类正确率高,编码耗时少。