期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
基于局部离群因子与隔离森林的激光超声缺陷检测
1
作者 李阳 朱文博 +4 位作者 静丰羽 叶中飞 马云瑞 周洋 邹云 《郑州大学学报(工学版)》 CAS 北大核心 2025年第1期105-112,共8页
针对激光超声(LU)缺陷检测中最大振幅图存在伪像的问题,结合主成分分析(PCA)和两种无监督的机器学习算法局部离群因子(LOF)与隔离森林(IF),以实现对LU数据的无监督异常检测。首先,利用PCA算法对LU数据进行降维处理,减轻了LU数据的复杂度... 针对激光超声(LU)缺陷检测中最大振幅图存在伪像的问题,结合主成分分析(PCA)和两种无监督的机器学习算法局部离群因子(LOF)与隔离森林(IF),以实现对LU数据的无监督异常检测。首先,利用PCA算法对LU数据进行降维处理,减轻了LU数据的复杂度;其次,利用LOF算法和IF算法进行了数据异常值的识别分析,并利用累积分布函数和核密度估计确定异常值的阈值大小;最后,对比了LOF算法、IF算法以及最大振幅图的检测结果。结果表明:LOF算法有更优的缺陷识别精度和更低的误判率。 展开更多
关键词 激光超声 缺陷检测 主成分分析 局部离群因子 隔离森林 铝合金
在线阅读 下载PDF
结合MapReduce框架的离群因子检测算法
2
作者 徐树奎 张煜 +2 位作者 李海霞 常海艳 张和伟 《火力与指挥控制》 CSCD 北大核心 2024年第11期128-132,共5页
离群因子检测目的是检测与大部分其他对象显著不同的数据对象。近年来,在某些分组计算应用场景下,数据量十分巨大,现有算法采用的欧氏距离计算开销不断增大,存在两个较有挑战性问题:1)组间数据对象数量十分巨大,计算耗时较长,开销较大;2... 离群因子检测目的是检测与大部分其他对象显著不同的数据对象。近年来,在某些分组计算应用场景下,数据量十分巨大,现有算法采用的欧氏距离计算开销不断增大,存在两个较有挑战性问题:1)组间数据对象数量十分巨大,计算耗时较长,开销较大;2)数据对象维度逐渐增多,算法时间开销大。将MapReduce计算框架与LOF算法相结合,解决上述问题。实验证明,引入了MapReduce分布式计算框架的改进算法可以有效提升大量数据中检测离群点的效率。 展开更多
关键词 离群因子检测 LOF算法 MAPREDUCE框架 分布式计算
在线阅读 下载PDF
基于CART决策树的分布式数据离群点检测算法 被引量:5
3
作者 朱华 乔勇进 董国钢 《现代电子技术》 北大核心 2024年第16期157-162,共6页
在分布式计算环境中,离群点通常表示数据中的异常情况,例如故障、欺诈、攻击等。通过检测分布式数据的离群点,可以对这些异常数据进行集中处理,保护系统和数据的安全。而进行离群点检测时,不仅要考虑数据的规模和复杂性,还要在分布式环... 在分布式计算环境中,离群点通常表示数据中的异常情况,例如故障、欺诈、攻击等。通过检测分布式数据的离群点,可以对这些异常数据进行集中处理,保护系统和数据的安全。而进行离群点检测时,不仅要考虑数据的规模和复杂性,还要在分布式环境下高效地发现离群点。因此,提出一种基于CART决策树的分布式数据离群点检测算法。在构建CART决策树时,使用类间中心距离作为分裂准则,根据分离类别对训练数据进行分类,从而确定数据的类型。在上述基础上,考虑到离群点的分布模式与其周围数据对象不同,使用空间局部偏离因子(SLDF)对空间内各个数据对象之间的离群程度展开度量,同时在高维空间内展开网格划分,引入SLDF算法检测剩余离群点集,最终实现分布式数据离群点检测。实验结果表明,所提方法的离散点检测错误率在0.010以内,可以更加精准地实现分布式数据离群点检测,具有良好的检测性能。 展开更多
关键词 CART决策树 分布式数据 离群检测 类间距离 数据分类 空间局部偏离因子
在线阅读 下载PDF
基于马氏距离局部离群因子方法的复杂化工过程故障检测 被引量:29
4
作者 马贺贺 胡益 侍洪波 《化工学报》 EI CAS CSCD 北大核心 2013年第5期1674-1682,共9页
为了满足实际的生产需要,复杂化工过程往往包含多个运行模态。同时过程的复杂性使得同一模态下的数据分布是一种高斯分布和非高斯分布混合存在的不确定情况。数据的多模态分布特性以及同一模态下数据分布的不确定性使得传统多元统计监控... 为了满足实际的生产需要,复杂化工过程往往包含多个运行模态。同时过程的复杂性使得同一模态下的数据分布是一种高斯分布和非高斯分布混合存在的不确定情况。数据的多模态分布特性以及同一模态下数据分布的不确定性使得传统多元统计监控(MSPM)方法很难给出令人满意的结果。针对这一问题,本文提出一种新的马氏距离局部离群因子(MDLOF)方法进行故障检测。通过利用马氏距离挖掘变量局部结构中包含的有用信息,并对样本的邻域密度加以考虑,形成对数据分布具有鲁棒性的基于密度的监控指标。最后通过数值仿真例子及Tennessee Eastman过程验证其有效性。 展开更多
关键词 多模态过程监控 故障检测 局部离群因子 马氏距离
在线阅读 下载PDF
一种基于偏离的局部离群点检测算法 被引量:14
5
作者 周世波 徐维祥 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第10期2293-2298,共6页
针对现有的局部离群点检测算法对数据对象不加分区,致使计算复杂度高的问题,提出了一种基于偏离的局部离群点检测算法。该算法首先对数据集进行分区,将可能存在的局部离群点与其紧邻的簇划分到一个数据块中,然后在每个数据块内,根据离... 针对现有的局部离群点检测算法对数据对象不加分区,致使计算复杂度高的问题,提出了一种基于偏离的局部离群点检测算法。该算法首先对数据集进行分区,将可能存在的局部离群点与其紧邻的簇划分到一个数据块中,然后在每个数据块内,根据离散系数刻画各个数据对象的偏离度,从而求得每个数据对象在其所属的数据块内的局部偏离因子,发现可能存在的局部离群点。理论分析和实验结果表明,该算法具有良好的识别局部离群点的能力,检测的准确率和时间效率均优于经典的LOF算法。 展开更多
关键词 聚类 局部离群检测 局部偏离因子 离散系数
在线阅读 下载PDF
利用局部离群因子算法探测核心技术发展趋势——以中国风能专利数据为例 被引量:14
6
作者 李佳佳 马铁驹 《情报杂志》 CSSCI 北大核心 2017年第3期119-124,195,共7页
[目的/意义]为验证局部离群因子算法在探测核心技术及核心技术发展趋势的有效性,丰富专利分析领域的研究。[方法/过程]以中外专利数据库服务平台CNIPR作为数据源,分别从局部离群因子算法和社会网络分析方法两个视角对中国风能领域的专... [目的/意义]为验证局部离群因子算法在探测核心技术及核心技术发展趋势的有效性,丰富专利分析领域的研究。[方法/过程]以中外专利数据库服务平台CNIPR作为数据源,分别从局部离群因子算法和社会网络分析方法两个视角对中国风能领域的专利数据进行对比分析,识别中国风能领域的核心技术以及核心技术的发展趋势。[结果/结论]结果显示,局部离群因子算法(LOF)和社会网络分析方法得出的结论基本一致:即中国在风力发电机技术方面一直保持优势,未来的发展潜力集中在风能照明装置及系统,验证了局部离群因子算法在探测核心技术及核心技术发展趋势方面的有效性。 展开更多
关键词 局部离群因子算法 专利分析 共现网络 技术预测 中国风能
在线阅读 下载PDF
基于加权距离的局部离群点检测算法 被引量:4
7
作者 尹成祥 张宏军 +2 位作者 张睿 綦秀利 王彬 《科学技术与工程》 北大核心 2014年第15期79-82,92,共5页
针对不同属性对数据点之间距离贡献的不同,提出了一种用于距离度量的属性加权策略。标称属性通过属性取值的信息熵进行加权,数值属性通过属性取值的标准差进行加权,混合属性根据标称属性和数值属性综合加权,加权策略可以放大离群点与正... 针对不同属性对数据点之间距离贡献的不同,提出了一种用于距离度量的属性加权策略。标称属性通过属性取值的信息熵进行加权,数值属性通过属性取值的标准差进行加权,混合属性根据标称属性和数值属性综合加权,加权策略可以放大离群点与正常数据之间的差别。仿真实验区分不同的属性类型对所提加权策略进行了验证,实验结果证明了策略的有效性。 展开更多
关键词 属性加权 信息熵 标准差 局部离群因子(local cutlier factor LOF)算法
在线阅读 下载PDF
基于聚类和局部信息的离群点检测算法 被引量:1
8
作者 张强 王春霞 +2 位作者 赵健 武龙举 李静永 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第6期1214-1217,共4页
针对目前大部分离群点检测算法未考虑数据的局部信息,导致离群点检测的准确率低问题,提出一种新的基于聚类和局部信息的两阶段离群点检测算法.通过定义新的局部离群因子作为判断数据对象是否为离群点的衡量标准,改进了传统离群点检测算... 针对目前大部分离群点检测算法未考虑数据的局部信息,导致离群点检测的准确率低问题,提出一种新的基于聚类和局部信息的两阶段离群点检测算法.通过定义新的局部离群因子作为判断数据对象是否为离群点的衡量标准,改进了传统离群点检测算法的过程.实验结果表明,该算法在保持线性复杂度的同时,能更准确、有效地挖掘出数据集中的离群点. 展开更多
关键词 离群检测 K-MEANS聚类 局部离群因子
在线阅读 下载PDF
基于局部估计密度的局部离群点检测算法 被引量:10
9
作者 谢兄 唐昱 《小型微型计算机系统》 CSCD 北大核心 2020年第2期387-392,共6页
局部离群点检测是近年来数据挖掘领域的热点问题之一.针对交通数据去噪问题,提出一种基于局部估计密度的局部离群点检测算法,算法使用核密度估计方法计算每个数据对象的密度估计值,来表示该数据对象的局部估计密度,并在核函数的带宽函... 局部离群点检测是近年来数据挖掘领域的热点问题之一.针对交通数据去噪问题,提出一种基于局部估计密度的局部离群点检测算法,算法使用核密度估计方法计算每个数据对象的密度估计值,来表示该数据对象的局部估计密度,并在核函数的带宽函数计算中引入数据对象的k-邻域平均距离作为其邻域信息,然后利用求出的局部估计密度计算数据对象的局部离群因子,依据局部离群因子的大小来判断数据对象是否为离群点.实验表明,该算法在UCI标准数据集与模拟数据集上都可以取得较好的表现. 展开更多
关键词 离群检测 核密度估计 邻域信息 局部离群因子
在线阅读 下载PDF
面向高维流数据的离群值检测算法
10
作者 梁昌好 童英华 冯忠岭 《计算机工程与设计》 北大核心 2024年第5期1406-1412,共7页
累计局部离群因子(cumulative local outlier factor,C_LOF)算法能有效解决数据流中的概念漂移问题和克服离群点检测中的伪装问题,但在处理高维数据时,时间复杂度较高。为有效解决时间复杂度高的问题,提出一种基于投影索引近邻的累计局... 累计局部离群因子(cumulative local outlier factor,C_LOF)算法能有效解决数据流中的概念漂移问题和克服离群点检测中的伪装问题,但在处理高维数据时,时间复杂度较高。为有效解决时间复杂度高的问题,提出一种基于投影索引近邻的累计局部离群因子(cumulative local outlier factor based projection indexed nearest neighbor,PINN_C_LOF)算法。使用滑动窗口维护活跃数据点,在新数据到达和旧数据过期时,引入投影索引近邻(projection indexed nearest neighbor,PINN)方法,增量更新窗口中受影响数据点的近邻。实验结果表明,PINN_C_LOF算法在检测高维流数据离群值时,在保持检测精确度的前提下,其时间复杂度较C_LOF算法明显降低。 展开更多
关键词 高维流数据 离群检测 累计局部离群因子 时间复杂度 投影索引近邻 局部离群因子 物联网
在线阅读 下载PDF
基于改进局部离群因子的低压用户用电隐患检测方法 被引量:12
11
作者 林之岸 刘晟源 +3 位作者 金伟超 林振智 宣玉华 谢天草 《电力系统自动化》 EI CSCD 北大核心 2022年第1期130-138,共9页
基于用电信息采集系统的量测数据,提出了一种基于改进局部离群因子算法的用户用电隐患检测方法。首先,提出基于信息熵的电压信息重构方法,扩大电压数据差异性。其次,提出基于K-奇异值分解的电压数据稀疏编码方法,解决台区用户原始负荷... 基于用电信息采集系统的量测数据,提出了一种基于改进局部离群因子算法的用户用电隐患检测方法。首先,提出基于信息熵的电压信息重构方法,扩大电压数据差异性。其次,提出基于K-奇异值分解的电压数据稀疏编码方法,解决台区用户原始负荷特征维度过高带来的冗余性问题。然后,提出基于改进局部离群因子算法的用户用电隐患检测方法,通过多局部离群因子模型组合优化,提高低压用户用电隐患检测泛化能力与准确率。最后,以中国浙江省某台区为例进行验证,算例分析的结果表明所提算法相对于传统局部离群因子算法具有更高的隐患检测准确率。 展开更多
关键词 低压台区 隐患检测 K-奇异值分解 稀疏编码 改进局部离群因子
在线阅读 下载PDF
融合孤立森林和局部离群因子的离群点检测方法 被引量:7
12
作者 凌莉 程张玉 邹承明 《计算机应用与软件》 北大核心 2022年第12期278-283,共6页
单一的离群点检测方法对所有数据采用同一种异常标准,无法综合考虑全局和局部信息,存在精度不足和效率低下等问题。为解决上述问题,提出一种融合孤立森林(iForest)和局部离群因子(LOF)的离群点检测方法(FSIF-HDLOF),即利用高效的iFores... 单一的离群点检测方法对所有数据采用同一种异常标准,无法综合考虑全局和局部信息,存在精度不足和效率低下等问题。为解决上述问题,提出一种融合孤立森林(iForest)和局部离群因子(LOF)的离群点检测方法(FSIF-HDLOF),即利用高效的iForest对原始数据集进行剪枝,再采用LOF对剪枝后的数据集进行更精确的检测。在剪枝及检测阶段,算法针对iForest和LOF的不足进行相应改进。结合数据点在剪枝及检测阶段的异常信息,定义加权融合公式来确定离群点。实验结果表明,FSIF-HDLOF实现了检测精度与效率的良好平衡,尤其在大数据量且低离群点比例的数据集上的检测精度优势较大。 展开更多
关键词 离群检测 大规模多维数据 孤立森林 数据降维 局部离群因子
在线阅读 下载PDF
基于动态多向局部离群因子的在线故障检测 被引量:11
13
作者 李元 马雨含 郭金玉 《计算机应用研究》 CSCD 北大核心 2017年第11期3259-3261,3266,共4页
针对化工间歇生产过程的多模态问题,为了提高故障检测性能,将滑动窗口技术与局部离群因子(LOF)算法相结合,提出了一种新的动态多向局部离群因子(dynamic multiway local outlier factor,DMLOF)用于工业过程在线故障检测的方法。首先将... 针对化工间歇生产过程的多模态问题,为了提高故障检测性能,将滑动窗口技术与局部离群因子(LOF)算法相结合,提出了一种新的动态多向局部离群因子(dynamic multiway local outlier factor,DMLOF)用于工业过程在线故障检测的方法。首先将间歇过程数据展开成二维数据,利用滑动窗口技术分别在时间片内运用局部离群因子算法计算LOF统计量,并利用核密度估计(KDE)确定控制限。对于新来数据标准化处理后分别在相应窗口内投影,确定新数据的LOF统计量并与控制限比较进行故障检测。最后通过青霉素发酵过程的实验结果验证了该算法的有效性。 展开更多
关键词 间歇过程 局部离群因子 滑动窗口 多模态 故障检测
在线阅读 下载PDF
基于局部离群因子的PMU连续坏数据检测方法 被引量:12
14
作者 刘灏 朱世佳 毕天姝 《电力系统自动化》 EI CSCD 北大核心 2022年第1期25-32,共8页
同步相量测量单元(PMU)能为电力系统监测和控制提供实时数据。然而,PMU连续坏数据与扰动数据高度相似,可能会导致控制中心做出错误的决策。针对PMU连续坏数据难以与扰动数据区分的问题,提出了一种基于局部离群因子(LOF)的连续坏数据检... 同步相量测量单元(PMU)能为电力系统监测和控制提供实时数据。然而,PMU连续坏数据与扰动数据高度相似,可能会导致控制中心做出错误的决策。针对PMU连续坏数据难以与扰动数据区分的问题,提出了一种基于局部离群因子(LOF)的连续坏数据检测算法。通过大量现场数据分析得出连续坏数据空间相似性差、扰动数据空间相似性强的结论,依据此结论提出了基于动态时间规整(DTW)的空间相似性评估方法。通过评估不同PMU的空间相似性来计算每台PMU的LOF值,进一步,提出了基于箱线图的阈值确定方法。通过比较当前窗口每台PMU的LOF值是否超过阈值,在线识别连续坏数据。仿真和测试结果表明,所提方法能有效实现连续坏数据的辨识和检测,并区分扰动数据。 展开更多
关键词 同步相量测量单元 连续坏数据检测 动态时间规整 局部离群因子
在线阅读 下载PDF
基于局部离群因子的列车卫星定位故障检测方法
15
作者 王韦舒 上官伟 +1 位作者 刘江 姜维 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第10期4021-4030,共10页
基于卫星导航系统的定位技术已成为我国下一代列车运行控制系统中自主定位的重要方式。卫星信号在传播过程中易受到环境多源噪声的影响而导致定位解算性能下降,需要对潜在发生的故障进行检测以保证定位性能。针对一致性假设检验中观测... 基于卫星导航系统的定位技术已成为我国下一代列车运行控制系统中自主定位的重要方式。卫星信号在传播过程中易受到环境多源噪声的影响而导致定位解算性能下降,需要对潜在发生的故障进行检测以保证定位性能。针对一致性假设检验中观测新息不再服从先验高斯分布问题,提出一种基于局部离群因子的卫星定位故障检测方法。首先,基于正常运行环境中的滤波新息构建历史数据集,采用核密度估计方法获取检验阈值。在此基础上,根据特定的邻域值计算当前时刻观测新息的局部离群因子,通过度量其与历史数据集中邻域数据之间的局部密度进而判别是否发生故障。最后,采用西部铁路实测数据对所提算法进行实验验证。研究结果表明,在不同偏差阶跃故障和不同速率斜坡故障场景下,所提出方法的故障检测性能优于滤波新息故障检测和自主完好性监测外推法。在15m阶跃故障场景中,所提出的算法故障检测率分别提高了100%和62%,故障期间水平位置均方根误差降低了36.1%和18.5%。在0.5m/s斜坡故障场景中,故障检测时延分别缩短了20s和11s,故障检测率提高了40%和20%,水平位置均方根误差降低了28.6%和9%。基于局部离群因子的故障检测方法具有高检测、低时延的显著优势,打破了先验特定分布假设对于故障检测性能的约束,有效提高了定位系统的定位精度和可靠性。 展开更多
关键词 列车运行控制系统 列车定位 卫星定位 故障检测 局部离群因子
在线阅读 下载PDF
基于RoBERTa与改进局部离群因子算法的专利新颖性测量 被引量:3
16
作者 廖列法 姚秀 李奎 《科学技术与工程》 北大核心 2023年第17期7420-7427,共8页
现有的专利新颖性测量方法需要依赖特定的领域知识以及专家的介入,性能差且耗时长,为此,提出了一种不依赖特定领域知识及专家的全自动化系统的识别新颖性专利的方法。首先利用鲁棒优化的BERT方法(robustly optimized BERT approach,RoBE... 现有的专利新颖性测量方法需要依赖特定的领域知识以及专家的介入,性能差且耗时长,为此,提出了一种不依赖特定领域知识及专家的全自动化系统的识别新颖性专利的方法。首先利用鲁棒优化的BERT方法(robustly optimized BERT approach,RoBERTa)表示专利向量,以解决需要依赖技术领域的知识来表示专利的多义词问题;其次,利用数据点的密度分布并结合信息熵改进局部离群因子(local outlier factor,LOF)算法来确定离群点个数及数据点集,提高离群点的检测精度,结合RoBERT与改进的LOF在数值尺度上度量专利的新颖性。实验验证表明,所提方法测量的专利新颖性的得分与现有文献中的相关专利指标显著相关,并且识别出的新颖性专利具有更高的技术影响。 展开更多
关键词 专利新颖性 RoBERTa 信息熵 局部离群因子算法 离群检测
在线阅读 下载PDF
基于网格划分加权的分布式离群点检测算法 被引量:10
17
作者 梅林 张凤荔 +1 位作者 王瑞锦 高强 《电子科技大学学报》 EI CAS CSCD 北大核心 2020年第6期860-866,共7页
分布式计算被广泛应用于离群点检测问题,但分布式环境中节点计算性能的差异带来了数据计算性能的下降问题。针对面向大尺度高维数据离群点分布式计算的负载均衡问题,该文提出了一种加权分布式离群点检测方法。首先根据数据节点的计算性... 分布式计算被广泛应用于离群点检测问题,但分布式环境中节点计算性能的差异带来了数据计算性能的下降问题。针对面向大尺度高维数据离群点分布式计算的负载均衡问题,该文提出了一种加权分布式离群点检测方法。首先根据数据节点的计算性能确定数据节点的权值,然后将数据空间划分为若干个网格,最后设计了一种基于网格划分的加权分配算法WGBA,将这些网格分配到数据节点中,实现并行计算。实验验证了该方法的有效性。 展开更多
关键词 基于密度的离群检测 分布式算法 网格划分 局部异常值因子
在线阅读 下载PDF
基于记忆效应的局部异常检测算法 被引量:8
18
作者 李健 阎保平 李俊 《计算机工程》 CAS CSCD 北大核心 2008年第12期4-6,共3页
基于密度的局部异常检测算法(LOF算法)的时间复杂度较高,限制了其在高维数据集以及大规模数据集中的使用。该文通过分析LOF算法,引入记忆效应概念,提出具有记忆效应的局部异常检测算法——MELOF算法。实验测试表明,该算法的计算结果与LO... 基于密度的局部异常检测算法(LOF算法)的时间复杂度较高,限制了其在高维数据集以及大规模数据集中的使用。该文通过分析LOF算法,引入记忆效应概念,提出具有记忆效应的局部异常检测算法——MELOF算法。实验测试表明,该算法的计算结果与LOF算法完全相同,而且能够大大缩短运行时间。 展开更多
关键词 数据挖掘 异常检测 局部异常因子 记忆效应 MELOF算法
在线阅读 下载PDF
基于局部密度的用户概貌攻击检测算法 被引量:3
19
作者 张付志 魏莎 《小型微型计算机系统》 CSCD 北大核心 2013年第4期850-855,共6页
针对现有的用户概貌攻击检测算法在检测模糊攻击时精确度不高的问题,本文提出一种基于局部密度的用户概貌攻击检测算法.首先,利用LOF离群点检测算法为每个用户计算局部离群因子,得到用户的局部离群程度;然后,结合攻击用户对目标项目的... 针对现有的用户概貌攻击检测算法在检测模糊攻击时精确度不高的问题,本文提出一种基于局部密度的用户概貌攻击检测算法.首先,利用LOF离群点检测算法为每个用户计算局部离群因子,得到用户的局部离群程度;然后,结合攻击用户对目标项目的评分与真实用户评分之间的差异,进一步确定目标项目及攻击目的,最终给出目标项目所对应的攻击概貌.实验结果表明,该算法无论是针对标准攻击还是模糊攻击,均具有较高的检测精度. 展开更多
关键词 用户概貌攻击 攻击检测 模糊攻击 局部密度 局部离群因子
在线阅读 下载PDF
耦合DWT-IFLOF的大坝监测数据异常检测算法 被引量:3
20
作者 王译羚 丁勇 李登华 《中国农村水利水电》 北大核心 2024年第7期203-209,共7页
基于数据驱动的模型已广泛应用于大坝运行状态建模与短期变形预测等领域中,而监测数据中存在的异常值会削弱甚至破坏数据驱动模型的可信度和鲁棒性。针对上述问题,提出一种耦合DWT-IFLOF的大坝监测数据异常检测算法。首先,采用小波降噪... 基于数据驱动的模型已广泛应用于大坝运行状态建模与短期变形预测等领域中,而监测数据中存在的异常值会削弱甚至破坏数据驱动模型的可信度和鲁棒性。针对上述问题,提出一种耦合DWT-IFLOF的大坝监测数据异常检测算法。首先,采用小波降噪技术减少监测数据集中采集噪声对模型建模的负面干扰。其次设计一种耦合孤立森林(iForest)异常检测算法与归一化局部离群因子值(LOF_(nor))的全新监测数据异常度量化表达式。最后通过引入拉伊达准则,依据计算得到的异常分数,对异常值进行定性筛查。试验结果表明,相较于热门异常检测算法,在查全率层面提升18.32%以上;查准率提升20.14%以上;准确率提升0.71%以上。可针对大坝安全监测数据中的异常值进行有效检测。 展开更多
关键词 异常检测 孤立森林 局部离群因子 评价指标
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部