期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
面向局部学习的点云分割分类网络 被引量:1
1
作者 冯锦梁 王蕾 +2 位作者 温智成 叶森辉 马晗 《激光与红外》 CAS CSCD 北大核心 2024年第1期24-30,共7页
在各种3D对象表示中,三维点云越来越受欢迎,其中基于点的方法在各种数据集上都表现出了良好的性能。针对PointNet++只关注了点本身的信息,并未关注相邻点的信息,同时它采用最大池化聚合局部信息,导致丢失次最大值信息。由此,文中提出Con... 在各种3D对象表示中,三维点云越来越受欢迎,其中基于点的方法在各种数据集上都表现出了良好的性能。针对PointNet++只关注了点本身的信息,并未关注相邻点的信息,同时它采用最大池化聚合局部信息,导致丢失次最大值信息。由此,文中提出Con-PointNet++网络,该网络利用增强局部信息模块,以关注相邻点的信息,从而增强局部信息特征提取;采用局部注意力机制下的融合池化模块,将最大池化与注意力池化特征信息融合,得到更为丰富的局部特征信息。本文方法在室内数据集S3DIS的Area_5区域上评估模型语义分割能力,mIoU达55.2%;在数据集ModelNet40上评估模型分类效果,OA达91.2%。与其他方法相比,所提模型性能均有提升,进一步证明了本文方法的有效性。 展开更多
关键词 三维点云 语义分割 分类 局部注意力机制 局部增强模块
在线阅读 下载PDF
基于改进YOLOv8n的井下人员多目标检测
2
作者 问永忠 贾澎涛 +2 位作者 夏敏高 张龙刚 王伟峰 《工矿自动化》 北大核心 2025年第1期31-37,77,共8页
针对井下危险区域人员监测视频存在光照不均匀、目标尺度不一致、遮挡等复杂情况,基于YOLOv8n网络结构,提出一种改进的井下人员多目标检测算法—YOLOv8n-MSMLAS。该算法对YOLOv8n的Neck层进行改进,添加多尺度空间增强注意力机制(MultiSE... 针对井下危险区域人员监测视频存在光照不均匀、目标尺度不一致、遮挡等复杂情况,基于YOLOv8n网络结构,提出一种改进的井下人员多目标检测算法—YOLOv8n-MSMLAS。该算法对YOLOv8n的Neck层进行改进,添加多尺度空间增强注意力机制(MultiSEAM),以增强对遮挡目标的检测性能;在C2f模块中引入混合局部通道注意力(MLCA)机制,构建C2f-MLCA模块,以融合局部和全局特征信息,提高特征表达能力;在Head层检测头中嵌入自适应空间特征融合(ASFF)模块,以增强对小尺度目标的检测性能。实验结果表明:(1)与Faster R-CNN,SSD,RT-DETR,YOLOv5s,YOLOv7等主流模型相比,YOLOv8n-MSMLAS综合性能表现最佳,mAP@0.5和mAP@0.5:0.95分别达到93.4%和60.1%,FPS为80.0帧/s,参数量为5.80×106个,较好平衡了模型的检测精度和复杂度。(2)YOLOv8n-MSMLAS在光照不均、目标尺度不一致、遮挡等条件下表现出较好的检测性能,适用于现场检测。 展开更多
关键词 煤矿井下危险区域 井下人员多目标检测 YOLOv8n 多尺度空间增强注意力机制 自适应空间特征融合 轻量化混合局部通道注意力机制
在线阅读 下载PDF
基于超小波变换与OD−ConvNeXt−ELA的矿用滚动轴承故障诊断
3
作者 吴新忠 罗康 +2 位作者 唐守锋 何泽旭 陈琪 《工矿自动化》 CSCD 北大核心 2024年第12期120-127,共8页
针对现有矿用滚动轴承故障诊断方法存在特征提取能力有限、泛化性欠佳的问题,提出了一种基于超小波变换(SLT)与OD−ConvNeXt−ELA的矿用滚动轴承故障诊断方法。以ConvNeXt−T为基础,引入批归一化(BN)技术以提高网络的泛化性,使用全维动态卷... 针对现有矿用滚动轴承故障诊断方法存在特征提取能力有限、泛化性欠佳的问题,提出了一种基于超小波变换(SLT)与OD−ConvNeXt−ELA的矿用滚动轴承故障诊断方法。以ConvNeXt−T为基础,引入批归一化(BN)技术以提高网络的泛化性,使用全维动态卷积(ODConv)替换原有的深度可分离卷积,以提高网络的适应性,引入高效局部注意力(ELA)以使网络聚焦关键位置特征,构建了矿用滚动轴承故障诊断OD−ConvNeXt−ELA网络模型;为充分利用OD−ConvNeXt−ELA网络模型的图像特征提取能力,选用SLT将采集的滚动轴承一维振动信号转换为二维时频图像后输入OD−ConvNeXt−ELA进行模型训练。选用凯斯西储大学(CWRU)和帕德博恩大学(PU)轴承数据集进行故障诊断实验,结果表明:对于单一工况下的CWRU轴承数据集,OD−ConvNeXt−ELA平均故障诊断准确率为99.65%,较ConvNeXt−T提高了1.61%;对于跨工况下的CWRU轴承数据集,OD−ConvNeXt−ELA平均故障诊断准确率为87.50%,较ConvNeXt−T提高了3.30%;对于跨工况下的PU轴承数据集,OD−ConvNeXt−ELA平均故障诊断准确率为89.33%,较ConvNeXt−T提高了3.46%;基于SLT与OD−ConvNeXt−ELA的矿用滚动轴承故障诊断方法在跨轴承、跨工况及噪声干扰下具有准确率高、泛化能力强的优势。 展开更多
关键词 矿用滚动轴承 故障诊断 ConvNeXt 超小波变换 全维动态卷积 高效局部注意力机制
在线阅读 下载PDF
中文重叠关系抽取的动态分层级联标记模型
4
作者 张利 张欢欢 袁玉波 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期450-458,共9页
构建了动态分层级联标记中文重叠关系抽取(RWG-LSA)模型:首先基于预训练语言模型和gated机制构建了动态字词融合特征学习模型(RWG),有效避免了主体标记模块的特征缺失和无法并行计算等问题;其次引入动态权局部自注意力(LSA),自主学习到... 构建了动态分层级联标记中文重叠关系抽取(RWG-LSA)模型:首先基于预训练语言模型和gated机制构建了动态字词融合特征学习模型(RWG),有效避免了主体标记模块的特征缺失和无法并行计算等问题;其次引入动态权局部自注意力(LSA),自主学习到主体层面的语义特征;最后在有效融合了输入序列的全局和主体局部特征的基础上,实现RWG-LSA模型对文本中实体对和关系的抽取。在SKE中文数据集上的实验表明,本模型对重叠关系抽取有显著效果,F1值达到了82.44%。 展开更多
关键词 文本挖掘 中文重叠关系抽取 动态字词融合 预训练语言模型 gated机制 局部注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部