期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
GLCrowd:基于全局-局部注意力的弱监督密集场景人群计数模型
1
作者 张红民 田钱前 +1 位作者 颜鼎鼎 卜令宇 《光电工程》 CAS CSCD 北大核心 2024年第10期75-86,共12页
针对人群计数在密集场景下存在背景复杂、尺度变化大等问题,提出了一种结合全局-局部注意力的弱监督密集场景人群计数模型——GLCrowd。首先,设计了一种结合深度卷积的局部注意力模块,通过上下文权重增强局部特征,同时结合特征权重共享... 针对人群计数在密集场景下存在背景复杂、尺度变化大等问题,提出了一种结合全局-局部注意力的弱监督密集场景人群计数模型——GLCrowd。首先,设计了一种结合深度卷积的局部注意力模块,通过上下文权重增强局部特征,同时结合特征权重共享获得高频局部信息。其次,利用Vision Transformer(ViT)的自注意力机制捕获低频全局信息。最后,将全局与局部注意力有效融合,并通过回归令牌来完成计数。在Shanghai Tech PartA、Shanghai Tech PartB、UCF-QNRF以及UCF_CC_50数据集上进行了模型测试,MAE分别达到了64.884、8.958、95.523、209.660,MSE分别达到了104.411、16.202、173.453、282.217。结果表明,提出的GLCrowd网络模型在密集场景下的人群计数中具有较好的性能。 展开更多
关键词 人群计数 Vision Transformer 全局-局部注意力 弱监督学习
在线阅读 下载PDF
基于多样化局部注意力网络的行人重识别 被引量:7
2
作者 徐胜军 刘求缘 +3 位作者 史亚 孟月波 刘光辉 韩九强 《电子与信息学报》 EI CSCD 北大核心 2022年第1期211-220,共10页
针对现实场景中行人图像被遮挡以及行人姿态或视角变化造成的未对齐问题,该文提出一种基于多样化局部注意力网络(DLAN)的行人重识别(Re-ID)方法。首先,在骨干网络后分别设计了全局网络和多分支局部注意力网络,一方面学习全局的人体空间... 针对现实场景中行人图像被遮挡以及行人姿态或视角变化造成的未对齐问题,该文提出一种基于多样化局部注意力网络(DLAN)的行人重识别(Re-ID)方法。首先,在骨干网络后分别设计了全局网络和多分支局部注意力网络,一方面学习全局的人体空间结构特征,另一方面自适应地获取人体不同部位的显著性局部特征;然后,构造了一致性激活惩罚函数引导各局部分支学习不同身体区域的互补特征,从而获取行人的多样化特征表示;最后,将全局特征与局部特征集成到分类识别网络中,通过联合学习形成更全面的行人描述。在Market1501,DukeMTMC-reID和CUHK03行人重识别数据集上,DLAN模型的mAP值分别达到了88.4%,79.5%和74.3%,Rank-1值分别达到了95.1%,88.7%和76.3%,明显优于大多数现有方法,实验结果充分验证了所提方法的鲁棒性和判别能力。 展开更多
关键词 行人重识别 多分支局部注意力 一致性激活惩罚 多样化
在线阅读 下载PDF
基于局部注意力Seq2Seq的中医文本多标签分类研究 被引量:1
3
作者 刘勇 杜建强 +3 位作者 罗计根 李清 于梦波 郑奇民 《现代信息科技》 2023年第17期96-101,共6页
针对传统多标签分类模型未充分考虑文本中临近标签之间存在的复杂关联性问题,提出一种基于局部注意力Seq2Seq的中医文本多标签分类模型。首先利用ALBERT模型提取文本的动态语义向量;然后多层Bi-LSTM构成的编码层用于提取文本间的语义关... 针对传统多标签分类模型未充分考虑文本中临近标签之间存在的复杂关联性问题,提出一种基于局部注意力Seq2Seq的中医文本多标签分类模型。首先利用ALBERT模型提取文本的动态语义向量;然后多层Bi-LSTM构成的编码层用于提取文本间的语义关系;最后解码层中使用多层LSTM的局部注意力,突出文本序列中临近标签之间的相互影响力,以预测多标签序列。在中医数据集上验证方法的有效性,实验结果表明,所提出的算法能够有效捕获标签之间的相关性,适用于中医文本的分类预测。 展开更多
关键词 多标签分类 中医文本 局部注意力 ALBERT Bi-LSTM LSTM
在线阅读 下载PDF
融合引导注意力的中文长文本摘要生成
4
作者 郭哲 张智博 +2 位作者 周炜杰 樊养余 张艳宁 《电子学报》 CSCD 北大核心 2024年第12期3914-3930,共17页
当前基于深度学习的中文长文本摘要生成的研究存在以下问题:(1)生成模型缺少信息引导,缺乏对关键词汇和语句的关注,存在长文本跨度下关键信息丢失的问题;(2)现有中文长文本摘要模型的词表常以字为基础,并不包含中文常用词语与标点,不利... 当前基于深度学习的中文长文本摘要生成的研究存在以下问题:(1)生成模型缺少信息引导,缺乏对关键词汇和语句的关注,存在长文本跨度下关键信息丢失的问题;(2)现有中文长文本摘要模型的词表常以字为基础,并不包含中文常用词语与标点,不利于提取多粒度的语义信息.针对上述问题,本文提出了融合引导注意力的中文长文本摘要生成(Chinese Long text Summarization with Guided Attention,CLSGA)方法.首先,针对中文长文本摘要生成任务,利用抽取模型灵活抽取长文本中的核心词汇和语句,构建引导文本,用以指导生成模型在编码过程中将注意力集中于更重要的信息.其次,设计中文长文本词表,将文本结构长度由字统计改变至词组统计,有利于提取更加丰富的多粒度特征,进一步引入层次位置分解编码,高效扩展长文本的位置编码,加速网络收敛.最后,以局部注意力机制为骨干,同时结合引导注意力机制,以此有效捕捉长文本跨度下的重要信息,提高摘要生成的精度.在四个不同长度的公共中文摘要数据集LCSTS(大规模中文短文本摘要数据集)、CNewSum(大规模中国新闻摘要数据集)、NLPCC2017和SFZY2020上的实验结果表明:本文方法对于长文本摘要生成具有显著优势,能够有效提高ROUGE-1、ROUGE-2、ROUGE-L值. 展开更多
关键词 自然语言处理 中文长文本摘要生成 引导注意力 层次位置分解编码 局部注意力
在线阅读 下载PDF
从全局到局部:双注意力融合去雾网络 被引量:2
5
作者 杨瑷玮 王华珂 侯兴松 《西安交通大学学报》 EI CAS CSCD 北大核心 2023年第7期191-200,共10页
为了处理现有的基于卷积神经网络去雾方法只使用单一的注意力、很难生成细节生动的清晰图像,且容易导致色彩失真的问题,提出了一个全局与局部注意力融合的图像去雾方法,以获得正常清晰度和无色彩失真的去雾图像。首先利用通道注意力将... 为了处理现有的基于卷积神经网络去雾方法只使用单一的注意力、很难生成细节生动的清晰图像,且容易导致色彩失真的问题,提出了一个全局与局部注意力融合的图像去雾方法,以获得正常清晰度和无色彩失真的去雾图像。首先利用通道注意力将输入的有雾图像在通道维度切分为两部分,一部分送入通道像素注意力通道抽取局部特征,另一部分送入Transformer通道学习全局特征,然后利用像素注意力对两个通道学习的特征进行融合,将上述模块作为基本单元组合为一个多级U型去雾网络,增加残差连接缓解上下采样导致的细节信息丢失,最后在网络底层加入一个Transformer模块学习全局信息。在多个公开可用的去雾图像数据集RESIDE SOTS Indoor、RESIDE SOTS Outdoor上测试所提方法的有效性,结果表明:对比经典的去雾方法,所提网络生成的图像细节更丰富并且色彩失真最少;在RESIDE SOTS Outdoor数据集上,相比经典的FFA-Net,峰值信噪比提高1.16 dB,相比GridDehazeNet,峰值信噪比提高3.68 dB。提出的全局与局部注意力融合方法能有效地去除雾霾,提升图像的对比度与清晰度,设计的多级U型去雾网络和残差连接结构能够缓解细节丢失,提升去雾效果,获得清晰的图像。 展开更多
关键词 图像去雾 全局与局部注意力融合 通道像素注意力 Transformer模块
在线阅读 下载PDF
结合非局部注意和多层残差的遥感图像建筑物提取方法 被引量:1
6
作者 刘炜清 贾赫成 《上海航天(中英文)》 CSCD 2024年第4期163-172,共10页
随着城市化和遥感技术的发展,高分辨率遥感图像地物提取任务也越来越具有挑战性。针对现有的方法无法捕捉图像中长距离的空间关系,以及遥感图像存在误检漏检等问题,提出了结合基于非局部注意力的多层残差遥感图像建筑物提取方法(NAMR-N... 随着城市化和遥感技术的发展,高分辨率遥感图像地物提取任务也越来越具有挑战性。针对现有的方法无法捕捉图像中长距离的空间关系,以及遥感图像存在误检漏检等问题,提出了结合基于非局部注意力的多层残差遥感图像建筑物提取方法(NAMR-Net)。在改进后的U-Net的结构基础上,引入了自适应非局部注意力模块(ANAB),以及多层残差学习模块(MRLB)。因此,网络可以从不同的卷积层中融合长距离像素间的特征,并通过2阶段的训练,有效地提升建筑物的分割质量,并在2个公开数据集WHU、Massachusetts上进行了实验。结果表明:NAMR-Net可以实现遥感图像中建筑物目标的高质量分割,并优于近年来几种较先进的方法。 展开更多
关键词 高分辨率遥感图像 建筑物提取 深度学习 残差学习 局部注意力
在线阅读 下载PDF
基于空间通道注意力的肝脏肿瘤分割
7
作者 何琼 陆雪松 《现代信息科技》 2024年第22期36-40,46,共6页
针对肝脏肿瘤分割面临的病灶形状、大小和位置差异明显等问题,文章提出了一种基于空间通道注意力的三维肝脏肿瘤分割方法。在3D U-Net的基础上融合了Transformer,提出成对全局和局部注意力PGLA(Paired Global Local Attention)模块替代T... 针对肝脏肿瘤分割面临的病灶形状、大小和位置差异明显等问题,文章提出了一种基于空间通道注意力的三维肝脏肿瘤分割方法。在3D U-Net的基础上融合了Transformer,提出成对全局和局部注意力PGLA(Paired Global Local Attention)模块替代Transformer中的传统注意力模块,并在尺度变换前引入CBAM(Convolutional Block Attention Module)模块。在肝脏肿瘤分割挑战赛数据集上的实验结果显示该方法在肿瘤分割的Dice系数上达到了69.18%,这些成绩均优于当前流行的模型,这证明了该方法在提高肝脏肿瘤分割精度方面的有效性。 展开更多
关键词 3D肝脏肿瘤分割 3D U-Net TRANSFORMER 成对全局和局部注意力模块 卷积注意力模块
在线阅读 下载PDF
基于双特征提取和注意力机制的图像超分辨率重建
8
作者 薄阳瑜 武永亮 王学军 《郑州大学学报(工学版)》 CAS 北大核心 2024年第6期48-55,64,共9页
针对图像超分辨率重建过程中忽略图像高频特征,导致特征提取不充分,重建图像纹理细节模糊的问题,提出了一种基于双特征提取和注意力机制的图像超分辨率重建方法。首先,该方法采用双分支网络进行特征提取,以解决图像重建过程中高频特征... 针对图像超分辨率重建过程中忽略图像高频特征,导致特征提取不充分,重建图像纹理细节模糊的问题,提出了一种基于双特征提取和注意力机制的图像超分辨率重建方法。首先,该方法采用双分支网络进行特征提取,以解决图像重建过程中高频特征和多尺度特征无法有效提取和一致融合的问题;其次,为了使网络提取到更加精确的高频特征,提出了局部空间注意力模块,并与通道注意力模块结合构建残差融合注意力模块,提高网络对高频特征的定位能力;最后,设计了空洞金字塔模块,扩大网络感受野,使网络多尺度提取特征。在4个基准数据集上的测试结果表明:尤其是超分辨率倍数为4时,所提方法较目前若干主流模型中的最佳峰值信噪比分别提升了0.16,0.08,0.03,0.20 dB,所提方法在视觉效果和定量分析方面均有较好提升。 展开更多
关键词 图像超分辨率重建 局部空间注意力 残差融合注意力 空洞金字塔 双分支网络
在线阅读 下载PDF
基于级联注意力机制的孪生网络视觉跟踪算法 被引量:5
9
作者 蒲磊 冯新喜 +2 位作者 侯志强 余旺盛 马素刚 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第12期2302-2310,共9页
针对全卷积孪生网络(SiamFC)在相似物体干扰及目标发生大尺度外观变化时容易跟踪失败的问题,提出了一种基于级联注意力机制的孪生网络视觉跟踪算法。首先,在网络的最后一层加入非局部注意力模块,从空间维度得到关于目标区域的自注意特征... 针对全卷积孪生网络(SiamFC)在相似物体干扰及目标发生大尺度外观变化时容易跟踪失败的问题,提出了一种基于级联注意力机制的孪生网络视觉跟踪算法。首先,在网络的最后一层加入非局部注意力模块,从空间维度得到关于目标区域的自注意特征图,并与最后一层特征进行相加运算。其次,考虑到不同通道特征对不同目标和各类场景的响应差异,引入通道注意力模块实现对特征通道的重要性选择。为了进一步提高跟踪的鲁棒性,将其与SiamFC算法进行加权融合,得到最终的响应图。最后,将提出的孪生网络模型在GOT10k和VID数据集上进行联合训练,进一步提升模型的表达力与判别力。实验结果表明:所提算法相比于SiamFC,在跟踪精度上提高了9.3%,在成功率上提高了5.4%。 展开更多
关键词 视觉跟踪 孪生网络 局部注意力 通道注意力 模型集成
在线阅读 下载PDF
面向局部学习的点云分割分类网络 被引量:1
10
作者 冯锦梁 王蕾 +2 位作者 温智成 叶森辉 马晗 《激光与红外》 CAS CSCD 北大核心 2024年第1期24-30,共7页
在各种3D对象表示中,三维点云越来越受欢迎,其中基于点的方法在各种数据集上都表现出了良好的性能。针对PointNet++只关注了点本身的信息,并未关注相邻点的信息,同时它采用最大池化聚合局部信息,导致丢失次最大值信息。由此,文中提出Con... 在各种3D对象表示中,三维点云越来越受欢迎,其中基于点的方法在各种数据集上都表现出了良好的性能。针对PointNet++只关注了点本身的信息,并未关注相邻点的信息,同时它采用最大池化聚合局部信息,导致丢失次最大值信息。由此,文中提出Con-PointNet++网络,该网络利用增强局部信息模块,以关注相邻点的信息,从而增强局部信息特征提取;采用局部注意力机制下的融合池化模块,将最大池化与注意力池化特征信息融合,得到更为丰富的局部特征信息。本文方法在室内数据集S3DIS的Area_5区域上评估模型语义分割能力,mIoU达55.2%;在数据集ModelNet40上评估模型分类效果,OA达91.2%。与其他方法相比,所提模型性能均有提升,进一步证明了本文方法的有效性。 展开更多
关键词 三维点云 语义分割 分类 局部注意力机制 局部增强模块
在线阅读 下载PDF
一种基于ICA-T特征和CNN-LA-BiLSTM的锂离子电池健康状态估计方法
11
作者 张朝龙 陈阳 +3 位作者 刘梦玲 张俣峰 华国庆 阴盼昐 《储能科学与技术》 北大核心 2025年第3期1258-1269,共12页
为了解决锂离子电池健康状态(SOH)估计精度不足以及退化过程描述不准确的问题,本文提出了一种基于卷积神经网络-局部注意力-双向长短期记忆神经网络(CNN-LA-BiLSTM)的锂离子电池SOH估计方法。首先,测量锂离子电池在充电阶段的充电时间... 为了解决锂离子电池健康状态(SOH)估计精度不足以及退化过程描述不准确的问题,本文提出了一种基于卷积神经网络-局部注意力-双向长短期记忆神经网络(CNN-LA-BiLSTM)的锂离子电池SOH估计方法。首先,测量锂离子电池在充电阶段的充电时间、电流、电压、容量以及温度等数据。然后,对锂离子电池进行增量容量分析,提取增量容量(IC)曲线的面积作为锂离子电池的电特征;计算锂离子电池充电阶段的温度积分,作为温度特征;将曲线面积与温度相结合,用作锂离子电池SOH估计的联合特征增量容量面积-温度(ICA-T)。随后,利用CNN-LA-BiLSTM方法建立SOH估计模型,在模型中,引入局部注意力(LA)优化卷积神经网络(CNN)的权重和偏差,使用Huber损失函数优化模型参数从而获得良好的SOH估计效果。利用本实验室的2组锂离子电池数据开展测试,结果表明,提出的方法能有效地估计电池的SOH,平均绝对百分比误差(MAPE)为0.5794%,均方根误差(RMSE)为0.0099,决定系数(R2)为0.9961。与传统方法相比,本文提出的方法在电池SOH估计中表现出了更优的性能。 展开更多
关键词 锂离子电池 健康状态估计 卷积神经网络-局部注意力-双向长短期记忆神经网络 增量容量 Huber损失函数
在线阅读 下载PDF
基于MP-DDQN的智能交通信号灯控制算法
12
作者 王鼎盛 丁磊 《陕西科技大学学报》 北大核心 2025年第2期196-202,214,共8页
针对当前交通阻塞状况日益增加,传统的交通灯固定时长控制方法灵活性较差,无法根据环境自适应配时的问题,本文提出一种基于混合局部随机探索的Double DQN算法的智能交通信号灯控制方法MP-DDQN.本方法首先在Double DQN方法的基础上引入M... 针对当前交通阻塞状况日益增加,传统的交通灯固定时长控制方法灵活性较差,无法根据环境自适应配时的问题,本文提出一种基于混合局部随机探索的Double DQN算法的智能交通信号灯控制方法MP-DDQN.本方法首先在Double DQN方法的基础上引入MLCA注意力机制,增强交通信号灯控制模型对于不同情景和特征的学习能力,优化交通流量的效率.其次,结合偏好引导随机探索的方法,根据当前状态的特征,有针对性地选择探索动作,减少了随机探索的开销,高效的学习到最优的交通信号灯控制策略.实验结果表明,本文提出的方法在交通流量优化方面表现较好,1000车流量中车辆的平均排队长度为2.32辆,车辆平均行驶速度为3.97m/s,相比于主流的控制方法更加高效,可以为城市交通系统的优化与改进提供有力的支持. 展开更多
关键词 交通信号灯控制 混合局部通道注意力 偏好引导 强化学习
在线阅读 下载PDF
基于改进YOLOv8n的井下人员多目标检测
13
作者 问永忠 贾澎涛 +2 位作者 夏敏高 张龙刚 王伟峰 《工矿自动化》 北大核心 2025年第1期31-37,77,共8页
针对井下危险区域人员监测视频存在光照不均匀、目标尺度不一致、遮挡等复杂情况,基于YOLOv8n网络结构,提出一种改进的井下人员多目标检测算法—YOLOv8n-MSMLAS。该算法对YOLOv8n的Neck层进行改进,添加多尺度空间增强注意力机制(MultiSE... 针对井下危险区域人员监测视频存在光照不均匀、目标尺度不一致、遮挡等复杂情况,基于YOLOv8n网络结构,提出一种改进的井下人员多目标检测算法—YOLOv8n-MSMLAS。该算法对YOLOv8n的Neck层进行改进,添加多尺度空间增强注意力机制(MultiSEAM),以增强对遮挡目标的检测性能;在C2f模块中引入混合局部通道注意力(MLCA)机制,构建C2f-MLCA模块,以融合局部和全局特征信息,提高特征表达能力;在Head层检测头中嵌入自适应空间特征融合(ASFF)模块,以增强对小尺度目标的检测性能。实验结果表明:(1)与Faster R-CNN,SSD,RT-DETR,YOLOv5s,YOLOv7等主流模型相比,YOLOv8n-MSMLAS综合性能表现最佳,mAP@0.5和mAP@0.5:0.95分别达到93.4%和60.1%,FPS为80.0帧/s,参数量为5.80×106个,较好平衡了模型的检测精度和复杂度。(2)YOLOv8n-MSMLAS在光照不均、目标尺度不一致、遮挡等条件下表现出较好的检测性能,适用于现场检测。 展开更多
关键词 煤矿井下危险区域 井下人员多目标检测 YOLOv8n 多尺度空间增强注意力机制 自适应空间特征融合 轻量化混合局部通道注意力机制
在线阅读 下载PDF
基于双文本提示和多重相似性学习的多标签遥感图像分类
14
作者 白淑芬 宋铁成 《电讯技术》 北大核心 2025年第1期35-42,共8页
多标签遥感图像分类旨在预测遥感图像中出现的多个相互关联的对象,其中文本标签能赋予丰富的语义信息。然而,目前多数多标签图像分类法未能充分考虑视觉语义图像-文本对信息。为了解决这一问题,提出了一种基于双文本提示和多重相似性(Bi... 多标签遥感图像分类旨在预测遥感图像中出现的多个相互关联的对象,其中文本标签能赋予丰富的语义信息。然而,目前多数多标签图像分类法未能充分考虑视觉语义图像-文本对信息。为了解决这一问题,提出了一种基于双文本提示和多重相似性(Bi-text Prompts and Multi-similarity,BTPMS)学习的多标签遥感图像分类算法。该算法首先利用场景与对象标签文本的双文本提示(Bi-text Prompts,BTP)提供丰富的先验知识,再综合考虑场景与对象标签之间的关联,对所得的文本特征和图像特征计算多重相似性,最后利用相似性得分进行多标签遥感图像分类。此外,设计了新颖的局部特征注意力(Local Feature Attention,LFA)模块,从空间与通道维度上捕捉图像中局部结构。在两个基准遥感数据集上进行广泛实验,结果表明所提算法优于对比的多标签图像分类方法。 展开更多
关键词 遥感图像 多标签图像分类 视觉语言预训练 提示学习 局部特征注意力
在线阅读 下载PDF
全局信息提取与重建的遥感图像语义分割网络
15
作者 梁龙学 贺成龙 +1 位作者 吴小所 闫浩文 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第11期2270-2279,2319,共11页
为了将遥感场景图像更好地进行分割,供给下游任务使用,提出多尺度注意力提取与全局信息重建网络.编码器引入多尺度卷积注意力骨干到遥感深度学习语义分割模型中.多尺度卷积注意力能够捕获多尺度信息,给解码器提供更丰富的全局深浅层信息... 为了将遥感场景图像更好地进行分割,供给下游任务使用,提出多尺度注意力提取与全局信息重建网络.编码器引入多尺度卷积注意力骨干到遥感深度学习语义分割模型中.多尺度卷积注意力能够捕获多尺度信息,给解码器提供更丰富的全局深浅层信息.在解码器,设计了全局多分支局部Transformer块.多尺度逐通道条带卷积重建多尺度空间上下文信息,弥补全局分支存在的空间信息割裂,与全局语义上下文信息共同重建全局信息分割图.解码器末端设计极化特征精炼头.通道上利用softmax和sigmoid组合,构建概率分布函数,拟合更好的输出分布,修复浅层中潜在的高分辨率信息损失,指导和融合深层信息,获得精细的空间纹理.实验结果表明,网络实现了很高的精确度,在ISPRS Vaihingen数据集上达到82.9%的平均交并比,在ISPRS Potsdam数据集上达到87.1%的平均交并比. 展开更多
关键词 语义分割 TRANSFORMER 多尺度卷积注意力 全局多分支局部注意力 全局信息重建
在线阅读 下载PDF
深度视频修复篡改的被动取证研究
16
作者 熊义毛 丁湘陵 +2 位作者 谷庆 杨高波 赵险峰 《信息安全学报》 CSCD 2024年第4期125-138,共14页
深度视频修复技术就是利用深度学习技术,对视频中的缺失区域进行补全或移除特定目标对象。它也可用于合成篡改视频,其篡改后的视频很难通过肉眼辨别真假,尤其是一些恶意修复的视频在社交媒体上传播时,容易造成负面的社会舆论。目前,针... 深度视频修复技术就是利用深度学习技术,对视频中的缺失区域进行补全或移除特定目标对象。它也可用于合成篡改视频,其篡改后的视频很难通过肉眼辨别真假,尤其是一些恶意修复的视频在社交媒体上传播时,容易造成负面的社会舆论。目前,针对深度视频修复篡改的被动检测技术起步较晚,尽管它已经得到一些关注,但在研究的深度和广度上还远远不够。因此,本文提出一种基于级联Conv GRU和八方向局部注意力的被动取证技术,从时空域角度实现对深度修复篡改区域的定位检测。首先,为了提取修复区域的更多特征,RGB帧和错误级分析帧ELA平行输入编码器中,通过通道特征级融合,生成不同尺度的多模态特征。其次,在解码器部分,使用编码器生成的多尺度特征与串联的Conv GRU进行通道级融合来捕捉视频帧间的时域不连续性。最后,在编码器的最后一级RGB特征后,引入八方向局部注意力模块,该模块通过八个方向来关注像素的邻域信息,捕捉修复区域像素间的异常。实验中,本文使用了VI、OP、DSTT和FGVC四种最新的深度视频修复方法与已有的深度视频修复篡改检测方法HPF和VIDNet进行了对比,性能优于HPF且在编码器参数仅VIDNet的五分之一的情况下获得与VIDNet可比的性能。结果表明,本文所提方法利用多尺度双模态特征和引入的八方向局部注意力模块来关注像素间的相关性,使用Conv GRU捕捉时域异常,实现像素级的篡改区域定位,获得精准的定位效果。 展开更多
关键词 深度视频修复 视频篡改检测 级联Conv GRU 局部注意力模块 空时预测
在线阅读 下载PDF
基于GAN的肺部CT影像超分辨率重建研究
17
作者 姜茜 吕玉超 +1 位作者 徐英豪 朱习军 《电子设计工程》 2024年第7期191-195,共5页
基于提高CT图像分辨率、丰富放大后图像纹理细节的目的,提出了RUAGAN模型。通过在生成器部分使用RRDB作为基本块,并加入局部注意力(Local aware Attention,LA)的方法提取影像中的高频信息;为提供更加真实的梯度反馈,使用U-Net网络作为... 基于提高CT图像分辨率、丰富放大后图像纹理细节的目的,提出了RUAGAN模型。通过在生成器部分使用RRDB作为基本块,并加入局部注意力(Local aware Attention,LA)的方法提取影像中的高频信息;为提供更加真实的梯度反馈,使用U-Net网络作为鉴别器。经过实验仿真表明,改进后的模型在肺部CT图像数据集上训练,在4x放大因子上重建出的图像纹理更加丰富,有清晰真实的边缘,其峰值信噪比与结构相似性分别达到31.980和0.974,高于其他分辨率重建模型。 展开更多
关键词 CT影像 超分辨率重建 生成对抗网络 局部注意力 U-Net
在线阅读 下载PDF
基于局部全局自注意与空间通道稀疏增强的红外船舶目标检测算法研究
18
作者 黎煜培 王忠华 《红外与激光工程》 2025年第3期339-351,共13页
针对红外船舶图像检测中存在目标尺度变化大、密集堆叠目标多、小目标细节丢失等问题,提出了一种基于局部全局自注意与空间通道稀疏增强的红外船舶目标检测算法。首先,在YOLOv8s主干网络中融入局部全局自注意力模块,以获取更丰富的局部... 针对红外船舶图像检测中存在目标尺度变化大、密集堆叠目标多、小目标细节丢失等问题,提出了一种基于局部全局自注意与空间通道稀疏增强的红外船舶目标检测算法。首先,在YOLOv8s主干网络中融入局部全局自注意力模块,以获取更丰富的局部和全局特征,解决深度特征提取过程中的信息稀释丢失问题,实现细致化聚焦目标特征,增强特征间依赖关系,提高小目标的特征提取能力。其次,在颈部网络中加入空间通道稀疏注意力模块,将分块特征提取与通道稀疏策略深度融合,提升多尺度目标的空间信息捕获能力,重构通道信息,再对特征重标定,强化重要特征信息的影响,增强多尺度特征融合能力。最后,采用引入了递减置信度惩罚因子的Soft-NMS改进NMS,优化堆叠目标与小目标误检漏检的问题。实验结果表明,改进后的YOLOv8s模型相较于基准模型,在mAP0.5和mAP0.5∶0.95评价指标上分别提高了2.1%和4.4%,达到95.7%和72.8%,进一步验证了该算法在提升红外船舶目标检测精度上的有效性。同时,与其他经典模型和最新的YOLOv11模型相比,该算法在检测精度方面具有更好的性能。 展开更多
关键词 YOLOv8s 局部全局自注意力 空间通道稀疏注意力 Soft-NMS
在线阅读 下载PDF
基于超小波变换与OD−ConvNeXt−ELA的矿用滚动轴承故障诊断
19
作者 吴新忠 罗康 +2 位作者 唐守锋 何泽旭 陈琪 《工矿自动化》 CSCD 北大核心 2024年第12期120-127,共8页
针对现有矿用滚动轴承故障诊断方法存在特征提取能力有限、泛化性欠佳的问题,提出了一种基于超小波变换(SLT)与OD−ConvNeXt−ELA的矿用滚动轴承故障诊断方法。以ConvNeXt−T为基础,引入批归一化(BN)技术以提高网络的泛化性,使用全维动态卷... 针对现有矿用滚动轴承故障诊断方法存在特征提取能力有限、泛化性欠佳的问题,提出了一种基于超小波变换(SLT)与OD−ConvNeXt−ELA的矿用滚动轴承故障诊断方法。以ConvNeXt−T为基础,引入批归一化(BN)技术以提高网络的泛化性,使用全维动态卷积(ODConv)替换原有的深度可分离卷积,以提高网络的适应性,引入高效局部注意力(ELA)以使网络聚焦关键位置特征,构建了矿用滚动轴承故障诊断OD−ConvNeXt−ELA网络模型;为充分利用OD−ConvNeXt−ELA网络模型的图像特征提取能力,选用SLT将采集的滚动轴承一维振动信号转换为二维时频图像后输入OD−ConvNeXt−ELA进行模型训练。选用凯斯西储大学(CWRU)和帕德博恩大学(PU)轴承数据集进行故障诊断实验,结果表明:对于单一工况下的CWRU轴承数据集,OD−ConvNeXt−ELA平均故障诊断准确率为99.65%,较ConvNeXt−T提高了1.61%;对于跨工况下的CWRU轴承数据集,OD−ConvNeXt−ELA平均故障诊断准确率为87.50%,较ConvNeXt−T提高了3.30%;对于跨工况下的PU轴承数据集,OD−ConvNeXt−ELA平均故障诊断准确率为89.33%,较ConvNeXt−T提高了3.46%;基于SLT与OD−ConvNeXt−ELA的矿用滚动轴承故障诊断方法在跨轴承、跨工况及噪声干扰下具有准确率高、泛化能力强的优势。 展开更多
关键词 矿用滚动轴承 故障诊断 ConvNeXt 超小波变换 全维动态卷积 高效局部注意力机制
在线阅读 下载PDF
中文重叠关系抽取的动态分层级联标记模型
20
作者 张利 张欢欢 袁玉波 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期450-458,共9页
构建了动态分层级联标记中文重叠关系抽取(RWG-LSA)模型:首先基于预训练语言模型和gated机制构建了动态字词融合特征学习模型(RWG),有效避免了主体标记模块的特征缺失和无法并行计算等问题;其次引入动态权局部自注意力(LSA),自主学习到... 构建了动态分层级联标记中文重叠关系抽取(RWG-LSA)模型:首先基于预训练语言模型和gated机制构建了动态字词融合特征学习模型(RWG),有效避免了主体标记模块的特征缺失和无法并行计算等问题;其次引入动态权局部自注意力(LSA),自主学习到主体层面的语义特征;最后在有效融合了输入序列的全局和主体局部特征的基础上,实现RWG-LSA模型对文本中实体对和关系的抽取。在SKE中文数据集上的实验表明,本模型对重叠关系抽取有显著效果,F1值达到了82.44%。 展开更多
关键词 文本挖掘 中文重叠关系抽取 动态字词融合 预训练语言模型 gated机制 局部注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部