针对密度峰值聚类算法(Density Peaks Clustering,DPC)需要人为指定截断距离d c,以及局部密度定义简单和一步分配策略导致算法在复杂数据集上表现不佳的问题,提出了一种基于自然最近邻的密度峰值聚类算法(Density Peaks Clustering base...针对密度峰值聚类算法(Density Peaks Clustering,DPC)需要人为指定截断距离d c,以及局部密度定义简单和一步分配策略导致算法在复杂数据集上表现不佳的问题,提出了一种基于自然最近邻的密度峰值聚类算法(Density Peaks Clustering based on Natural Nearest Neighbor,NNN-DPC)。该算法无需指定任何参数,是一种非参数的聚类方法。该算法首先根据自然最近邻的定义,给出新的局部密度计算方法来描述数据的分布,揭示内在的联系;然后设计了两步分配策略来进行样本点的划分。最后定义了簇间相似度并提出了新的簇合并规则进行簇的合并,从而得到最终聚类结果。实验结果表明,在无需参数的情况下,NNN-DPC算法在各类数据集上都有优秀的泛化能力,对于流形数据或簇间密度差异大的数据能更加准确地识别聚类数目和分配样本点。与DPC、FKNN-DPC(Fuzzy Weighted K-nearest Density Peak Clustering)以及其他3种经典聚类算法的性能指标相比,NNN-DPC算法更具优势。展开更多
对于基于划分的聚类算法随机选取初始聚类中心导致初始中心敏感,聚类结果不稳定、集群效率低等问题,提出一种基于MapReduce框架和改进的密度峰值的划分聚类算法(based on MapReduce framework and improved density peak partition clus...对于基于划分的聚类算法随机选取初始聚类中心导致初始中心敏感,聚类结果不稳定、集群效率低等问题,提出一种基于MapReduce框架和改进的密度峰值的划分聚类算法(based on MapReduce framework and improved density peak partition clustering algorithm,MR-IDPACA)。首先,通过自然最近邻定义新的局部密度计算方式,将搜索样本密度峰值点作为划分聚类算法的初始聚类中心;其次针对算法在大规模数据下运行时间复杂,提出基于E2LSH(exact Euclidean locality sensitive hashing)的一种分区方法,即KLSH(K of locality sensitive hashing)。通过该方法对数据分区后结合MapReduce框架并行搜寻初始聚类中心,有效减少了算法在搜索初始聚类中心时的运行时间;对于MapReduce框架中的数据倾斜问题,提出ME(multistage equilibrium)策略对中间数据进行多段均衡分区,以提升算法运行效率;在MapReduce框架下并行聚类,得到最终聚类结果。实验得出MR-IDPACA算法在单机环境下有着较高的准确率和较强的稳定性,集群性能上也有着较好的加速比和运行时间,聚类效果有所提升。展开更多
文摘针对密度峰值聚类算法(Density Peaks Clustering,DPC)需要人为指定截断距离d c,以及局部密度定义简单和一步分配策略导致算法在复杂数据集上表现不佳的问题,提出了一种基于自然最近邻的密度峰值聚类算法(Density Peaks Clustering based on Natural Nearest Neighbor,NNN-DPC)。该算法无需指定任何参数,是一种非参数的聚类方法。该算法首先根据自然最近邻的定义,给出新的局部密度计算方法来描述数据的分布,揭示内在的联系;然后设计了两步分配策略来进行样本点的划分。最后定义了簇间相似度并提出了新的簇合并规则进行簇的合并,从而得到最终聚类结果。实验结果表明,在无需参数的情况下,NNN-DPC算法在各类数据集上都有优秀的泛化能力,对于流形数据或簇间密度差异大的数据能更加准确地识别聚类数目和分配样本点。与DPC、FKNN-DPC(Fuzzy Weighted K-nearest Density Peak Clustering)以及其他3种经典聚类算法的性能指标相比,NNN-DPC算法更具优势。
文摘对于基于划分的聚类算法随机选取初始聚类中心导致初始中心敏感,聚类结果不稳定、集群效率低等问题,提出一种基于MapReduce框架和改进的密度峰值的划分聚类算法(based on MapReduce framework and improved density peak partition clustering algorithm,MR-IDPACA)。首先,通过自然最近邻定义新的局部密度计算方式,将搜索样本密度峰值点作为划分聚类算法的初始聚类中心;其次针对算法在大规模数据下运行时间复杂,提出基于E2LSH(exact Euclidean locality sensitive hashing)的一种分区方法,即KLSH(K of locality sensitive hashing)。通过该方法对数据分区后结合MapReduce框架并行搜寻初始聚类中心,有效减少了算法在搜索初始聚类中心时的运行时间;对于MapReduce框架中的数据倾斜问题,提出ME(multistage equilibrium)策略对中间数据进行多段均衡分区,以提升算法运行效率;在MapReduce框架下并行聚类,得到最终聚类结果。实验得出MR-IDPACA算法在单机环境下有着较高的准确率和较强的稳定性,集群性能上也有着较好的加速比和运行时间,聚类效果有所提升。