期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于无人机影像密集匹配点云的传统村落地面点提取及DEM生成——以湘西德夯村为例 被引量:10
1
作者 付翔翔 邓运员 +2 位作者 郑文武 周邵宁 周佳露 《测绘通报》 CSCD 北大核心 2021年第12期1-5,共5页
目前,针对利用无人机技术在山地起伏大、山体植被密集区域,难以获取地面点及DEM等问题,本文提出了一种结合布料模拟算法和改进的局部最大值算法,利用树顶点、树高等植被信息,提取地面点,进而生成整个区域的DEM的方法。以中国传统村落德... 目前,针对利用无人机技术在山地起伏大、山体植被密集区域,难以获取地面点及DEM等问题,本文提出了一种结合布料模拟算法和改进的局部最大值算法,利用树顶点、树高等植被信息,提取地面点,进而生成整个区域的DEM的方法。以中国传统村落德夯村为例,利用植被系数和高程信息将点云分割为植被密集区和非植被密集区两个部分。在非植被密集区,通过布料模拟算法和改进的局部最大值算法分别提取地面点和树顶点,计算平均树高;在植被密集区,通过该区域的树顶点推算得到植被密集区的近似地面点,最终将两部分的地面点云进行TIN插值得到该地区的DEM。试验结果表明,利用此方法生成的DEM均方根误差,在非植被密集区达0.037 m,植被密集区可达1.606 m,整体平均误差达1.492 m,总体精度较好,基本可以满足村落尺度空间分析的需求。 展开更多
关键词 无人机 DEM 传统村落 布料模拟算法 局部最大值算法
在线阅读 下载PDF
基于无人机三维信息的杉木新造林林分参数遥感估测研究 被引量:7
2
作者 郝振帮 林丽丽 +5 位作者 余坤勇 刘健 赵各进 李明慧 宋贤芬 杨柳青 《西南林业大学学报(自然科学)》 CAS 北大核心 2023年第1期108-116,共9页
以福建顺昌埔上国有林场的杉木新造林为研究对象,采用大疆Phantom 4 Multispectral无人机分2次获取研究区的无人机影像,并以无人机影像为数据源,从研究区的数字表面模型(DSM)中提取冠层高度模型(CHM)。根据局部最大值算法和分水岭算法,... 以福建顺昌埔上国有林场的杉木新造林为研究对象,采用大疆Phantom 4 Multispectral无人机分2次获取研究区的无人机影像,并以无人机影像为数据源,从研究区的数字表面模型(DSM)中提取冠层高度模型(CHM)。根据局部最大值算法和分水岭算法,从CHM中获取研究区杉木的树高和冠幅数据;同时在研究区设立15个标准地,采用测量杆测定各标准地内所有杉木的树高和南北冠幅;以随机选取、且在影像中具有精确位置的265棵杉木为单木水平的实测数据,以及各标准地内杉木的平均树高和平均南北冠幅为林分水平的实测数据,分别从单木和林分角度对杉木树高和冠幅的遥感估测精度进行评价。结果表明:2次飞行作业之间树高的估测精度分别为90.86%和91.34%,南北冠幅的估测精度分别为83.55%和83.95%;在单木水平上,遥感估测的树高精度为R^(2)=0.89、RMSE=22.37cm、EA=91.00%;南北冠幅精度为R^(2)=0.70、RMSE=27.33cm、EA=82.22%;在林分水平上,树高的估测精度为R^(2)=0.95、RMSE=12.27 cm、EA=94.61%;南北冠幅的估测精度为R^(2)=0.82、RMSE=11.24 cm、EA=92.20%。遥感估测的树高均值比野外测量的树高均值小0.07 m,南北冠幅均值比野外测量的均值小0.04 m。基于无人机三维信息实现了研究区杉木树高和冠幅的精确估测,且在飞行参数一致的情况下,不同飞行区域和飞行批次之间的估测精度相近。研究可以为杉木新造林快速、稳定的监测和经营管理策略的科学制定提供基础数据。 展开更多
关键词 局部最大值算法 分水岭算法 树高 冠幅 单木识别
在线阅读 下载PDF
高郁闭度人工林无人机激光雷达单木分割方法优化 被引量:10
3
作者 朱泊东 罗洪斌 +1 位作者 金京 岳彩荣 《林业科学》 EI CAS CSCD 北大核心 2022年第9期48-59,共12页
【目的】针对高郁闭度林分条件下基于LiDAR点云数据单木分割林木提取困难、总体精度较低等问题,提出一种基于冠层起伏率结合分水岭算法和基于点云的局部最大值聚类算法的分层分割法,为开展无人机LiDAR技术森林资源调查提供技术参考,为... 【目的】针对高郁闭度林分条件下基于LiDAR点云数据单木分割林木提取困难、总体精度较低等问题,提出一种基于冠层起伏率结合分水岭算法和基于点云的局部最大值聚类算法的分层分割法,为开展无人机LiDAR技术森林资源调查提供技术参考,为提高单木分割总体精度提供新策略。【方法】利用无人机激光雷达数据,采用分水岭算法、基于点云的局部最大值聚类算法和基于冠层起伏率结合分水岭算法和基于点云的局部最大值聚类算法的分层分割法对高郁闭度思茅松人工林进行单木分割,并分析分水岭算法中4种CHM空间分辨率和3种DSM插值方法对单木分割效果的影响,与无人机高分辨率影像单木树冠目视解译结果进行比较,以探测率r、准确率p和F得分为指标对单木分割精度进行验证和评价。【结果】在幼龄林中,冠层起伏率较大,分水岭算法对单层林的分割效果优于基于点云的局部最大值聚类算法;在中龄林和近熟林中,冠层起伏率较小,分水岭算法易将思茅松树枝识别为树冠,基于点云的局部最大值聚类算法的分割效果优于分水岭算法;基于冠层起伏率结合分水岭算法和基于点云的局部最大值聚类算法的分层分割法充分考虑不同龄组的林分结构差异,精度最高(F=0.75),优于分水岭算法(F=0.71)和基于点云的局部最大值聚类算法(F=0.68);在分水岭算法中,当分辨率为0.5 m×0.5 m时采用反距离权重法(IDW)插值得到的CHM单木分割精度最高(r=0.70,p=0.94,F=0.81)。【结论】林分结构存在差异,单一单木分割方法效果欠佳,通过提取样地冠层起伏率确定分水岭算法和基于点云的局部最大值聚类算法单木分割适用的林分条件,可拓宽单一单木分割方法在不同林分条件下的优势,提升单木分割精度。 展开更多
关键词 LIDAR 单木分割 分水岭算法 基于点云的局部最大值聚类算法 分层分割
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部