A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrich...A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrichartificial bee foraging behaviors by combining local search and comprehensive learning using multi-dimensional PSO-based equation.With comprehensive learning,the bees incorporate the information of global best solution into the solution search equation to improve the exploration while the local search enables the bees deeply exploit around the promising area,which provides a proper balance between exploration and exploitation.The experimental results on comparing the MABC to several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm.Furthermore,we applied the MABC algorithm to image segmentation problem.Experimental results verify the effectiveness of the proposed algorithm.展开更多
In the view of the disadvantages of complex method (CM) and electromagnetism-like algorithm (EM), complex electromagnetism-like hybrid algorithm (CEM) was proposed by embedding complex method into electromagnetism-lik...In the view of the disadvantages of complex method (CM) and electromagnetism-like algorithm (EM), complex electromagnetism-like hybrid algorithm (CEM) was proposed by embedding complex method into electromagnetism-like algorithm as local optimization algorithm. CEM was adopted to search the minimum safety factor in slope stability analysis and the results show that CEM holds advantages over EM and CM. It combines the merits of two and is more stable and efficient. For further improvement, two CEM hybrid algorithms based on predatory search (PS) strategies were proposed, both of which consist of modified algorithms and the search area of which is dynamically adjusted by changing restriction. The CEM-PS1 adopts theoretical framework of original predatory search strategy. The CEM-PS2 employs the idea of area-restricted search learned from predatory search strategy, but the algorithm structure is simpler. Both the CEM-PS1 and CEM-PS2 have been demonstrated more effective and efficient than the others. As for complex method which locates in hybrid algorithm, the optimization can be achieved at a convergence precision of 1×10-3, which is recommended to use.展开更多
In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evoluti...In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evolution (DE) and a new chaotic local search. In the CDEPSO algorithm, DE provides its best solution to PSO if the best solution obtained by DE is better than that by PSO, while the best solution in the PSO is performed by chaotic local search. To investigate the performance of CDEPSO, four typical reliability-redundancy allocation problems were solved and the results indicate that the convergence speed and robustness of CDEPSO is better than those of PSO and CPSO (a hybrid algorithm which only combines PSO with chaotic local search). And, compared with the other six improved meta-heuristics, CDEPSO also exhibits more robust performance. In addition, a new performance was proposed to more fairly compare CDEPSO with the same six improved recta-heuristics, and CDEPSO algorithm is the best in solving these problems.展开更多
基金Projects(6177021519,61503373)supported by National Natural Science Foundation of ChinaProject(N161705001)supported by Fundamental Research Funds for the Central University,China
文摘A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrichartificial bee foraging behaviors by combining local search and comprehensive learning using multi-dimensional PSO-based equation.With comprehensive learning,the bees incorporate the information of global best solution into the solution search equation to improve the exploration while the local search enables the bees deeply exploit around the promising area,which provides a proper balance between exploration and exploitation.The experimental results on comparing the MABC to several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm.Furthermore,we applied the MABC algorithm to image segmentation problem.Experimental results verify the effectiveness of the proposed algorithm.
基金Project(10972238) supported by the National Natural Science Foundation of ChinaProject(2010ssxt237) supported by Graduate Student Innovation Foundation of Central South University, ChinaProject supported by Excellent Doctoral Thesis Support Program of Central South University, China
文摘In the view of the disadvantages of complex method (CM) and electromagnetism-like algorithm (EM), complex electromagnetism-like hybrid algorithm (CEM) was proposed by embedding complex method into electromagnetism-like algorithm as local optimization algorithm. CEM was adopted to search the minimum safety factor in slope stability analysis and the results show that CEM holds advantages over EM and CM. It combines the merits of two and is more stable and efficient. For further improvement, two CEM hybrid algorithms based on predatory search (PS) strategies were proposed, both of which consist of modified algorithms and the search area of which is dynamically adjusted by changing restriction. The CEM-PS1 adopts theoretical framework of original predatory search strategy. The CEM-PS2 employs the idea of area-restricted search learned from predatory search strategy, but the algorithm structure is simpler. Both the CEM-PS1 and CEM-PS2 have been demonstrated more effective and efficient than the others. As for complex method which locates in hybrid algorithm, the optimization can be achieved at a convergence precision of 1×10-3, which is recommended to use.
基金Project(20040533035)supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject(60874070)supported by the National Natural Science Foundation of China
文摘In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evolution (DE) and a new chaotic local search. In the CDEPSO algorithm, DE provides its best solution to PSO if the best solution obtained by DE is better than that by PSO, while the best solution in the PSO is performed by chaotic local search. To investigate the performance of CDEPSO, four typical reliability-redundancy allocation problems were solved and the results indicate that the convergence speed and robustness of CDEPSO is better than those of PSO and CPSO (a hybrid algorithm which only combines PSO with chaotic local search). And, compared with the other six improved meta-heuristics, CDEPSO also exhibits more robust performance. In addition, a new performance was proposed to more fairly compare CDEPSO with the same six improved recta-heuristics, and CDEPSO algorithm is the best in solving these problems.