针对现有模式分类方法不能较好地保持数据空间的局部流形信息或差异信息等问题,提出一种基于流形学习的局部保留最大信息差v-支持向量机(Locality-preserved maximum information variance v-support vector machine,v-LPMIVSVM).对于...针对现有模式分类方法不能较好地保持数据空间的局部流形信息或差异信息等问题,提出一种基于流形学习的局部保留最大信息差v-支持向量机(Locality-preserved maximum information variance v-support vector machine,v-LPMIVSVM).对于模式分类问题,v-LPMIVSVM引入局部同类离散度和局部异类离散度概念,分别体现输入空间局部流形结构和局部差异(或判别)信息,通过最小化局部同类离散度和最大化局部异类离散度,优化分类器的投影方向.同时,v-LPMIVSVM采用适于流形数据的测地线距离来度量数据点对间的相似性,以更好地反映流形数据的本质结构.人造和实际数据集实验结果显示所提方法具有良好的泛化性能.展开更多
以市场需求为导向的现代工业过程的生产条件要根据市场的需求不断做出调整,因此实际工业过程中存在多种工况的复杂情况,而过程的数据将不再完全服从高斯分布,其均值与协方差结构往往随着工况的切换而发生较大变化,为了能及时检测此类生...以市场需求为导向的现代工业过程的生产条件要根据市场的需求不断做出调整,因此实际工业过程中存在多种工况的复杂情况,而过程的数据将不再完全服从高斯分布,其均值与协方差结构往往随着工况的切换而发生较大变化,为了能及时检测此类生产过程中的故障,提出一种新的基于带宽可变的局部密度估计的过程在线监控策略。首先利用局部投影保留(locality preserving projection,LPP)将高维数据投影到低维子空间中,充分地保留数据的局部结构;然后通过带宽可变的非参数密度核函数来进行局部密度估计,并采用局部密度因子(local density factor,LDF)的思想构造监控统计量,进而对工业过程故障进行在线检测;最后通过仿真研究,结果表明所提方法能够有效地应用于多模态过程的故障检测。展开更多
文摘针对现有模式分类方法不能较好地保持数据空间的局部流形信息或差异信息等问题,提出一种基于流形学习的局部保留最大信息差v-支持向量机(Locality-preserved maximum information variance v-support vector machine,v-LPMIVSVM).对于模式分类问题,v-LPMIVSVM引入局部同类离散度和局部异类离散度概念,分别体现输入空间局部流形结构和局部差异(或判别)信息,通过最小化局部同类离散度和最大化局部异类离散度,优化分类器的投影方向.同时,v-LPMIVSVM采用适于流形数据的测地线距离来度量数据点对间的相似性,以更好地反映流形数据的本质结构.人造和实际数据集实验结果显示所提方法具有良好的泛化性能.
文摘以市场需求为导向的现代工业过程的生产条件要根据市场的需求不断做出调整,因此实际工业过程中存在多种工况的复杂情况,而过程的数据将不再完全服从高斯分布,其均值与协方差结构往往随着工况的切换而发生较大变化,为了能及时检测此类生产过程中的故障,提出一种新的基于带宽可变的局部密度估计的过程在线监控策略。首先利用局部投影保留(locality preserving projection,LPP)将高维数据投影到低维子空间中,充分地保留数据的局部结构;然后通过带宽可变的非参数密度核函数来进行局部密度估计,并采用局部密度因子(local density factor,LDF)的思想构造监控统计量,进而对工业过程故障进行在线检测;最后通过仿真研究,结果表明所提方法能够有效地应用于多模态过程的故障检测。