期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
同质区共享端元变异性的高光谱混合像元分解
1
作者 王宁 保文星 +1 位作者 屈克文 冯伟 《光学精密工程》 EI CAS CSCD 北大核心 2024年第4期578-594,共17页
由于不同的照明条件、复杂的大气环境等因素,相同端元的光谱特征在图像的不同位置呈现出可见的差异,这种现象被称为端元的光谱变异性。在相当大的场景中,端元的变异性可能很大,但在适度的局部同质区内,变异性往往很小。扰动线性混合模型... 由于不同的照明条件、复杂的大气环境等因素,相同端元的光谱特征在图像的不同位置呈现出可见的差异,这种现象被称为端元的光谱变异性。在相当大的场景中,端元的变异性可能很大,但在适度的局部同质区内,变异性往往很小。扰动线性混合模型(Perturbed Linear Mixing Model,PLMM)在解混的过程中可以减轻端元变异性造成的不利影响,但是对缩放效应造成的变异性的处理能力较弱。为此,本文改进了扰动线性混合模型,引入了尺度因子以处理缩放效应造成的变异性,并结合超像素分割算法划分局部同质区,然后设计出基于局部同质区共享端元变异性的解混算法(Shared Endmember Variability in Unmixing,SEVU)。与扰动线性混合模型,扩展线性混合模型(Extended Linear Mixing Model,ELMM)等算法相比,所提SEVU算法在合成数据集上平均端元光谱角距离(mean Spectral Angle Distance,mSAD)和丰度均方根误差(abundance Root Mean Square Error,aRMSE)最优,分别为0.0855和0.0562;在Jasper Ridge和Cuprite真实数据集上mSAD是最优的,分别为0.0603和0.1003。在合成数据集和两个实测数据集上的实验结果验证了SEVU算法的有效性。 展开更多
关键词 高光谱图像 混合像元分解 光谱变异性 扰动线性混合模型 局部同质
在线阅读 下载PDF
基于改进JSEG算法的高分辨率遥感图像分割方法 被引量:5
2
作者 冯晓毅 王西博 +1 位作者 王蕾 彭进业 《计算机科学》 CSCD 北大核心 2012年第8期284-287,共4页
JSEG算法是一种有效的彩色图像分割方法,但该方法直接用于遥感图像分割时,往往会出现因遥感图像区域边界较模糊而导致区域边界分割不准确,或因区域阴影而导致的过分割现象。为了解决上述问题,提出基于改进JSEG算法的遥感图像分割方法,... JSEG算法是一种有效的彩色图像分割方法,但该方法直接用于遥感图像分割时,往往会出现因遥感图像区域边界较模糊而导致区域边界分割不准确,或因区域阴影而导致的过分割现象。为了解决上述问题,提出基于改进JSEG算法的遥感图像分割方法,该方法利用能更好描述区域内颜色的同质性的局部同质矩阵来校正传统JSEG算法中的局部J值,以实现对区域边界的准确反映,提高区域边界分割的准确性;利用图像的LBP/C纹理特征,合并具有相似纹理信息的颜色类,以减弱传统JSEG算法的过分割现象。仿真实验验证了上述方法的有效性。 展开更多
关键词 高分辨率遥感图像 JSEG算法 局部同质 LBP/C算子
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部