期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
局部切空间排列算法用于轴承早期故障诊断 被引量:14
1
作者 杨庆 陈桂明 +1 位作者 何庆飞 刘鲭洁 《振动.测试与诊断》 EI CSCD 北大核心 2012年第5期831-835,867-868,共5页
提出了一种基于经验模态分解(EMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先,利用经验模态分解算法分解滚动轴承不同模式下的振动信号,得到各阶本征模态分量和残余分量,提取各分量中的幅域参数和频域参数组成... 提出了一种基于经验模态分解(EMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先,利用经验模态分解算法分解滚动轴承不同模式下的振动信号,得到各阶本征模态分量和残余分量,提取各分量中的幅域参数和频域参数组成原始特征参数集;然后,建立基于类别可分性测度的邻域参数k选取方法,运用局部切空间排列算法实现敏感特征提取;最后,应用该方法对滚动轴承不同状态下的振动数据进行特征提取和模式识别,对比分析改进后的局部切空间排列算法与主成分分析、核主元分析以及传统局部切空间排列算法的故障模式识别能力。分析结果表明,该方法提取的滚动轴承故障特征敏感性较好,提高了故障模式识别能力,实现了滚动轴承的早期故障诊断。 展开更多
关键词 特征提取 局部切空间排列算法 经验模态分解 模式识别 滚动轴承
在线阅读 下载PDF
局部切空间排列和支持向量机的故障诊断模型 被引量:46
2
作者 万鹏 王红军 徐小力 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第12期2789-2795,共7页
提出了一种非线性流形学习和支持向量机的故障诊断模型。基于机电系统振动信号时域与频域的20个特征参数构建高维特征空间,利用局部切空间排列的非线性流形学习算法提取出隐藏其中的低维流形,网格搜索算法进行维数和邻域点参数的优化,... 提出了一种非线性流形学习和支持向量机的故障诊断模型。基于机电系统振动信号时域与频域的20个特征参数构建高维特征空间,利用局部切空间排列的非线性流形学习算法提取出隐藏其中的低维流形,网格搜索算法进行维数和邻域点参数的优化,实现高维相空间中局部邻域参数的自适应选取,获得机电系统的故障特征。利用K折交叉验证和一对一法构造支持向量机多类故障分类器,采用径向基核函数支持向量机进行机电系统的故障诊断。应用于转子试验台的3种故障状态的识别并与其他故障诊断方法进行分析比较,结果表明基于局部切空间排列和支持向量机的机电系统故障诊断模型诊断精度可达到96.6667%,可以有效提取故障的敏感特征并解决机电系统故障样本缺乏的问题。 展开更多
关键词 机电系统 故障诊断 局部切空间排列算法 支持向量机 网格搜索
在线阅读 下载PDF
基于相空间重构与非线性流形的滚动轴承复合故障诊断 被引量:5
3
作者 赵洪杰 潘紫微 +1 位作者 童靳于 刘燕 《振动与冲击》 EI CSCD 北大核心 2013年第11期41-45,共5页
针对滚动轴承振动信号的非平稳及非线性特点,提出基于相空间重构与非线性流形的滚动轴承复合故障诊断方法。将滚动轴承一维振动信号重构到高维相空间,计算重构信号协方差矩阵特征值,以此组成轴承故障诊断原始特征集;采用局部切空间排列... 针对滚动轴承振动信号的非平稳及非线性特点,提出基于相空间重构与非线性流形的滚动轴承复合故障诊断方法。将滚动轴承一维振动信号重构到高维相空间,计算重构信号协方差矩阵特征值,以此组成轴承故障诊断原始特征集;采用局部切空间排列算法对原始特征集作特征压缩后,将所得新特征输入到K-means分类器中进行轴承故障识别与聚类。实验结果表明,与经典线性分析方法 PCA相比,该方法聚类效果更好。 展开更多
关键词 滚动轴承 空间重构 流形 复合故障 局部切空间排列算法
在线阅读 下载PDF
带标志点的LTSA算法及其在轴承故障诊断中的应用 被引量:3
4
作者 杨庆 陈桂明 +1 位作者 江良洲 何庆飞 《振动工程学报》 EI CSCD 北大核心 2012年第6期732-738,共7页
针对非监督式流形学习算法面临的增量式学习问题,提出一种带标志点的增量式局部切空间排列算法。该方法在局部切空间排列算法的基础上,利用最小角度回归算法从原始训练样本中选取标志点,以选取的标志点和新增样本建立所有样本的全局坐... 针对非监督式流形学习算法面临的增量式学习问题,提出一种带标志点的增量式局部切空间排列算法。该方法在局部切空间排列算法的基础上,利用最小角度回归算法从原始训练样本中选取标志点,以选取的标志点和新增样本建立所有样本的全局坐标矩阵,利用原始样本低维嵌入坐标和全局坐标矩阵对新增样本的低维嵌入坐标进行估计,并采用全局坐标矩阵特征值迭代方法更新所有样本的低维嵌入坐标。滚动轴承4种不同状态振动数据样本的增量式识别结果表明,本方法在实现局部切空间排列算法增量式学习的基础上,保持了对滚动轴承不同状态样本较高的类别可分性测度。 展开更多
关键词 局部切空间排列算法 最小角度回归算法 增量式学习 模式识别 滚动轴承
在线阅读 下载PDF
增量LTSA算法在转子故障数据集降维中的应用
5
作者 胡常安 袁德强 +1 位作者 王彭 杜文波 《噪声与振动控制》 CSCD 2015年第1期230-234,共5页
针对传统流形学习算法不具有增量学习能力;故难以处理新增数据与大规模海量数据集的问题,由此,提出一种用于机械转子故障数据集降维的增量局部切空间的排列算法(ILTSA)。该算法首先采用局部切空间排列算法对原始训练样本进行降维处理,... 针对传统流形学习算法不具有增量学习能力;故难以处理新增数据与大规模海量数据集的问题,由此,提出一种用于机械转子故障数据集降维的增量局部切空间的排列算法(ILTSA)。该算法首先采用局部切空间排列算法对原始训练样本进行降维处理,获得其低维流形结构,然后通过增量学习算法对新增样本进行处理。得到所有数据的低维嵌入坐标,最后通过转子故障数据集验证了该方法的有效性,取得了良好的分类效果,有利于实时动态故障监测与诊断。 展开更多
关键词 振动与波 故障诊断 人工智能理论 转子 局部切空间排列算法
在线阅读 下载PDF
基于变分模态分解与流形学习的滚动轴承故障特征提取方法 被引量:26
6
作者 戚晓利 叶绪丹 +3 位作者 蔡江林 郑近德 潘紫微 张兴权 《振动与冲击》 EI CSCD 北大核心 2018年第23期133-140,共8页
提出了一种基于变分模态分解(VMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先利用VMD算法分解圆柱滚子轴承不同运行状态下的振动信号,通过求取瞬时频率均值并绘制特征曲线筛选出与原始信号最为相关的几个分量;... 提出了一种基于变分模态分解(VMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先利用VMD算法分解圆柱滚子轴承不同运行状态下的振动信号,通过求取瞬时频率均值并绘制特征曲线筛选出与原始信号最为相关的几个分量;然后,提取有效模态分量的时域指标和小波包频带分解能量所构成的频域指标,两者结合初步提取高维故障特征后,再应用LTSA对故障特征进行二次提取;最后输入到K-means分类器进行故障类型识别;通过对圆柱滚子轴承故障诊断的对比实验分析,发现:(1)与时频特征+LTSA、EMD+LTSA特征提取方法相比,VMD+LTSA方法在分类效果和识别精度上更具优势;(2) LTSA算法相比较于PCA、LPP、LE、ISOMAP和LLE这5种算法,其降维后的特征故障敏感性最好。研究结果表明所提出的方法在圆柱滚子轴承故障诊断方面具有一定的优越性。 展开更多
关键词 变分模态分解 流形学习 局部切空间排列算法 故障诊断 圆柱滚动轴承
在线阅读 下载PDF
基于多故障流形的旋转机械故障诊断 被引量:9
7
作者 苏祖强 汤宝平 +1 位作者 赵明航 秦毅 《振动工程学报》 EI CSCD 北大核心 2015年第2期309-315,共7页
针对旋转机械不同故障可能分布于不同故障流形,提出了基于多故障流形的旋转机械故障诊断方法。该方法分别提取每一类故障对应的故障流形,并在多故障流形上进行新增样本的故障识别。针对所需解决的低维流形提取、流形内蕴维数选取和多故... 针对旋转机械不同故障可能分布于不同故障流形,提出了基于多故障流形的旋转机械故障诊断方法。该方法分别提取每一类故障对应的故障流形,并在多故障流形上进行新增样本的故障识别。针对所需解决的低维流形提取、流形内蕴维数选取和多故障流形上的故障识别问题,分别采用线性局部切空间排列算法和免疫遗传算法来进行低维故障流形提取和流形内蕴维数选取,并通过故障样本重构误差这一新的判别准则进行故障识别。齿轮箱故障模拟实验的结果验证了此方法的有效性。 展开更多
关键词 故障诊断 旋转机械 多故障流形 局部切空间排列算法
在线阅读 下载PDF
基于LTSA和MICA与PCA联合指标的过程监控方法及应用 被引量:9
8
作者 江伟 王昕 王振雷 《化工学报》 EI CAS CSCD 北大核心 2015年第12期4895-4903,共9页
独立成分分析(ICA)方法主要被用来对线性非高斯过程进行监控,为了提高对非高斯过程的监控效果,则利用过程数据信息对ICA的监控指标进行了改进,提出了一种改进的独立成分分析(MICA)方法。许多实际工业过程数据都具有非线性、非高斯与高... 独立成分分析(ICA)方法主要被用来对线性非高斯过程进行监控,为了提高对非高斯过程的监控效果,则利用过程数据信息对ICA的监控指标进行了改进,提出了一种改进的独立成分分析(MICA)方法。许多实际工业过程数据都具有非线性、非高斯与高斯混合分布的特点,为此提出了一种基于LTSA和MICA与PCA联合指标的过程监控的方法。首先采用局部切空间排列(LTSA)算法对样本数据进行非线性降维,然后分别用MICA和PCA方法得到非高斯与高斯统计量,对其进行加权得到新的统计量,并被用于过程监控。最后将该方法应用在田纳西-伊斯曼(TE)过程和乙烯裂解炉的过程监控中,证明了该方法的有效性。 展开更多
关键词 算法 主元分析 过程控制 非高斯 改进的独立成分分析 局部切空间排列算法 联合指标
在线阅读 下载PDF
二型模糊理论在乙烯裂解炉过程监控中的应用
9
作者 高勇 王振雷 +1 位作者 钱锋 朱彦兴 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期302-308,370,共8页
利用区间二型模糊C-均值聚类的方法,将过程数据进行聚类,并且聚类过程采用自适应的方法选择聚类数,由此区别不同的工况;利用局部切空间排列算法(LTSA)分别对聚类之后的每一类数据进行降维处理,然后利用每一类降维后的数据,使用支持向量... 利用区间二型模糊C-均值聚类的方法,将过程数据进行聚类,并且聚类过程采用自适应的方法选择聚类数,由此区别不同的工况;利用局部切空间排列算法(LTSA)分别对聚类之后的每一类数据进行降维处理,然后利用每一类降维后的数据,使用支持向量数据描述(SVDD)的方法构建多个模型,并建立相应的统计量与统计限,完成离线建模过程。在线监控过程中首先判断过程数据属于哪一种工况,然后利用相应的模型来计算统计量并判断是否故障,利用乙烯裂解炉的过程数据进行了仿真研究,验证了方法的可行性。 展开更多
关键词 区间二型模糊C均值聚类 自适应 局部切空间排列算法 支持向量数据描述
在线阅读 下载PDF
基于LTSA和联合指标的非高斯过程监控方法及应用 被引量:7
10
作者 杨正永 王昕 王振雷 《化工学报》 EI CAS CSCD 北大核心 2015年第4期1370-1379,共10页
很多实际工业过程数据都具有高维、非线性且不严格服从高斯分布等特点。为处理数据维数高且是高斯分布和非高斯分布的混合体等问题,实现高效的过程监控,提出了一种基于LTSA和联合指标的非高斯过程监控方法。首先采用局部切空间排列(LTSA... 很多实际工业过程数据都具有高维、非线性且不严格服从高斯分布等特点。为处理数据维数高且是高斯分布和非高斯分布的混合体等问题,实现高效的过程监控,提出了一种基于LTSA和联合指标的非高斯过程监控方法。首先采用局部切空间排列(LTSA)算法从正常样本数据中提取低维子流形以实现维数约减;然后基于非高斯-高斯两步策略建立统计模型并得到非高斯统计量和高斯统计量,再对其进行加权得到新的统计量以实现对过程的监控;最后将该方法应用于田纳西-伊斯曼标准测试平台和实际乙烯裂解炉的过程监控,说明了所提方法的有效性。 展开更多
关键词 算法 集成 系统工程 非线性 非高斯 联合指标 局部切空间排列算法 田纳西-伊斯曼过程
在线阅读 下载PDF
LTSA和KECA相结合的轴承故障诊断
11
作者 高胜利 党伟明 +1 位作者 齐咏生 赵小荣 《机械设计与制造》 北大核心 2018年第10期27-31,共5页
针对轴承的工况复杂,其振动信号呈现非线性、非平稳特性。传统算法不能充分挖掘出非线性、非平稳信号内部本质信息,提出了基于局部切空间排列算法(LTSA)与核熵成份分析(KECA)相结合的故障诊断方法。该方法首先将滚动轴承振动信号一维时... 针对轴承的工况复杂,其振动信号呈现非线性、非平稳特性。传统算法不能充分挖掘出非线性、非平稳信号内部本质信息,提出了基于局部切空间排列算法(LTSA)与核熵成份分析(KECA)相结合的故障诊断方法。该方法首先将滚动轴承振动信号一维时间序列重构到高维相空间,并估计数据的本征维数;然后利用局部切空间排列算法对数据集进行维数约简,得到初始的低维流形结构特征向量空间的第一行特征,对其进行快速傅里叶变换(FFT),从其频谱中分别提取滚动轴承内环、外环的故障特征频率及它们分别对应的倍频和频谱能量等7个变量作为故障特征向量;最后采用KECA对滚动轴承的故障特征向量进行模式识别,KECA可实现根据熵值大小进行特征分类,具有较强的非线性处理能力,从而实现故障的识别与诊断。采用Case Western Reserve大学提供的轴承实验数据对算法进行了验证,结果表明该方法可有效提取滚动轴承的故障特征,可以对滚动轴承的故障类型精确分类,实现对滚动轴承准确的故障诊断。 展开更多
关键词 滚动轴承 轴承故障诊断 局部切空间排列算法 KECA
在线阅读 下载PDF
基于LTSA-Greedy-SVDD的过程监控 被引量:1
12
作者 杨正永 王昕 王振雷 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期343-348,共6页
为解决实际工业过程中的非线性和非高斯问题,实现有效的过程监控,提出了一种基于局部切空间排列算法的过程监控方法。首先运用局部切空间排列算法对标准化后的正常样本数据提取出低维子流形以实现维数约减。之后利用Greedy方法提取特征... 为解决实际工业过程中的非线性和非高斯问题,实现有效的过程监控,提出了一种基于局部切空间排列算法的过程监控方法。首先运用局部切空间排列算法对标准化后的正常样本数据提取出低维子流形以实现维数约减。之后利用Greedy方法提取特征样本以支持向量数据描述方法建立监控模型,最后采用相应统计量进行过程监控。以田纳西伊斯曼(TE)模型为仿真平台,仿真结果说明了该方法的有效性。 展开更多
关键词 非线性 局部空间排列(LTSA)算法 Greedy方法 支持向量数据描述
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部