期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于形态学融合滤波的农业图像改进MSR增强算法 被引量:1
1
作者 刘宝锺 徐欣 《江苏农业科学》 北大核心 2016年第1期394-396,共3页
农业图像增强对于提高图像识别与分析结果的准确性有很大帮助。多尺度Retinex(muti-scale retinex,MSR)算法由于对噪声具有较强的敏感性,容易在增强图像信息的同时放大噪声,为此结合形态学滤波思想对MSR算法进行改进。首先分别采用半径... 农业图像增强对于提高图像识别与分析结果的准确性有很大帮助。多尺度Retinex(muti-scale retinex,MSR)算法由于对噪声具有较强的敏感性,容易在增强图像信息的同时放大噪声,为此结合形态学滤波思想对MSR算法进行改进。首先分别采用半径为1、2的棱形结构元素构建了开启-闭合、闭合-开启的形态滤波器,将它们分别对含有噪声的农业图像进行滤波,获得了滤波图像1、滤波图像2;然后根据局部像素最大化原则对滤波图像1、滤波图像2进行融合,得到滤波后图像;最后采用MSS算法对滤波后的图像进行增强。分别采用图像标准差(standard deviation,SD)、归一化均方根误差(normalized mean square error,NMSE)对增强后的图像进行客观性评价。结果表明,该算法对于低对比度且含有噪声的农业图像的增强效果明显优于形态学滤波、MSR算法。 展开更多
关键词 形态学融合滤波 农业图像 MSR算法 局部像素最大化原则
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部