期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于局部主成分分析的协同过滤推荐模型 被引量:5
1
作者 郁雪 李敏强 《计算机工程》 CAS CSCD 北大核心 2010年第14期37-39,共3页
根据传统协同过滤算法中用户数据的高维稀疏特点,提出一种基于局部主成分分析协同过滤推荐模型,采用基于语义分类和主成分分析的二阶段降维技术,分别对各类主题页面进行局部降维处理,以保留对某类主题真正感兴趣的用户群,加速最近邻的... 根据传统协同过滤算法中用户数据的高维稀疏特点,提出一种基于局部主成分分析协同过滤推荐模型,采用基于语义分类和主成分分析的二阶段降维技术,分别对各类主题页面进行局部降维处理,以保留对某类主题真正感兴趣的用户群,加速最近邻的搜索过程。通过对真实Web日志数据的测试,证明该模型具有较高的预测精度。 展开更多
关键词 推荐系统 协同过滤算法 维数约简 局部主成分分析
在线阅读 下载PDF
非局部主成分分析极大似然估计MRI图像Rician噪声去噪 被引量:2
2
作者 吴锡 周激流 谢明元 《中国生物医学工程学报》 CAS CSCD 北大核心 2012年第4期481-486,共6页
由于MRI图像中噪声呈Rician分布,直接使用现有针对高斯噪声的去噪方法将引入误差。基于此本研究使用Rician噪声模型改进现有极大似然估计去噪的高斯模型,同时引入非局部主成分分析,在非局部区域选择灰度和纹理均具有较高相似性的像素进... 由于MRI图像中噪声呈Rician分布,直接使用现有针对高斯噪声的去噪方法将引入误差。基于此本研究使用Rician噪声模型改进现有极大似然估计去噪的高斯模型,同时引入非局部主成分分析,在非局部区域选择灰度和纹理均具有较高相似性的像素进行最优复原估计。使用非局部主成分分析不仅克服现有局部性去噪方法模糊边界的缺陷,而且具有更高的图像细节信息复原能力。分别应用所提出的方法、局部极大似然估计去除Rician噪声方法、采用参数修正非局部均值去除Rician噪声方法、无特定噪声模型的全变差方法,对不同噪声等级和不同纹理复杂度的图像进行定性和定量的去噪实验。结果表明,所提出的方法可在保持图像细节和纹理信息的前提下有效去噪,较之现有方法效果更好。 展开更多
关键词 图像去噪 Rician噪声 局部主成分分析 极大似然估计
在线阅读 下载PDF
一种用于表情识别的局部二维主成分分析算法 被引量:3
3
作者 张日东 贾克斌 《计算机应用与软件》 北大核心 2018年第2期172-177,211,共7页
人脸表情识别是生物特征识别技术的重要组成部分,在安全监测、人机交互等领域有着重要应用。主成分分析(PCA)算法是一种目前广泛应用于表情识别的算法,但在实际应用中识别对象存在个体间差异以及易混淆的相似表情,对算法的稳定性提出了... 人脸表情识别是生物特征识别技术的重要组成部分,在安全监测、人机交互等领域有着重要应用。主成分分析(PCA)算法是一种目前广泛应用于表情识别的算法,但在实际应用中识别对象存在个体间差异以及易混淆的相似表情,对算法的稳定性提出了很大挑战。针对于上述问题,在PCA基础上提出一种局部二维主成分分析(L-2DPCA)改进算法,并用于人脸表情特征提取。算法先为每个测试样本选取一组近邻的训练样本,作为局部样本结构;然后再对局部样本进行二维主成分分析;通过放大不同子集类样本间的距离并缩小子集中所有样本间距离的方式,使映射矩阵提取更为准确的表情特征。在Rafd和LMIP人脸表情库进行算法性能测试,实验结果表明,所提出的改进算法在保证实时性的前提下,识别率较标准算法平均分别提高了6%和10%。 展开更多
关键词 表情识别 局部二维成分分析 局部样本
在线阅读 下载PDF
局部鲁棒主成分分析及其在故障诊断中的应用 被引量:2
4
作者 苏立鹏 金樟民 +1 位作者 尤戈 易灿灿 《机械设计与制造》 北大核心 2021年第8期246-249,255,共5页
机械设备故障振动信号的分析一般需要经过特征提取,然而由于背景噪声或者环境干扰的存在使得信号的信息适用性下降,从而导致特征提取存在很大的困难。一种新的局部鲁棒主成分分析的降噪方法被提出,该方法假设数据矩阵在有限个局部区域... 机械设备故障振动信号的分析一般需要经过特征提取,然而由于背景噪声或者环境干扰的存在使得信号的信息适用性下降,从而导致特征提取存在很大的困难。一种新的局部鲁棒主成分分析的降噪方法被提出,该方法假设数据矩阵在有限个局部区域可以分解为表示信号特征信息的低秩成分和代表噪声的稀疏成分的加权和,且矩阵只需在局部区域具有低秩的属性而不必要满足全局低秩的强条件,并通过有限个局部低秩矩阵的平滑凸组合来全局逼近原始矩阵。通过仿真实验和实测的轴承外圈故障数据的分析,证明了提出的方法具有较强的降噪和特征提取效果。 展开更多
关键词 机械设备故障诊断 特征提取 局部鲁棒成分分析 平滑核函数
在线阅读 下载PDF
一种改进的局部切空间排列算法 被引量:36
5
作者 杨剑 李伏欣 王珏 《软件学报》 EI CSCD 北大核心 2005年第9期1584-1590,共7页
局部切空间排列算法(localtangentspacealignment,简称LTSA)是一种新的流形学习算法,能有效地学习出高维采样数据的低维嵌入坐标,但也存在一些不足,如不能处理样本数较大的样本集和新来的样本点.针对这些缺点,提出了一种基于划分的局部... 局部切空间排列算法(localtangentspacealignment,简称LTSA)是一种新的流形学习算法,能有效地学习出高维采样数据的低维嵌入坐标,但也存在一些不足,如不能处理样本数较大的样本集和新来的样本点.针对这些缺点,提出了一种基于划分的局部切空间排列算法(partitionallocaltangentspacealignment,简称PLTSA).它建立在VQPCA(vectorquantizationprincipalcomponentanalysis)算法和LTSA算法的基础上,利用X-均值算法把样本空间划分成一些相互有重叠的块,通过把样本点投影到它所在块的局部切空间上得到其局部低维坐标,对局部低维坐标施加平移、旋转、伸缩变换,求出整体低维坐标.PLTSA解决了VQPCA不能求出整体低维坐标和LTSA中大规模矩阵的特征值分解问题,且能够有效处理新来的样本点,这是很多流形学习算法所不能的.通过实验说明了PLTSA的有效性. 展开更多
关键词 维数约简 流形学习 成分分析 局部主成分分析 局部切空间排列 X-均值
在线阅读 下载PDF
局部PCA参数约束的Hough多椭圆分层检测算法 被引量:7
6
作者 牛晓霞 胡正平 杨苏 《计算机应用》 CSCD 北大核心 2009年第5期1365-1368,共4页
针对随机Hough变换(RHT)在复杂图像中检测圆及椭圆时随机采样所造成的大量无效采样、无效累积以及运算时间长等问题,提出基于局部PCA感兴趣参数约束Hough多椭圆分层检测思路。首先利用边缘检测算子获得边缘信息并去除边缘交叉点,在边缘... 针对随机Hough变换(RHT)在复杂图像中检测圆及椭圆时随机采样所造成的大量无效采样、无效累积以及运算时间长等问题,提出基于局部PCA感兴趣参数约束Hough多椭圆分层检测思路。首先利用边缘检测算子获得边缘信息并去除边缘交叉点,在边缘图像中标记并提取出满足一定长度的连续曲线段;其次利用线段PCA方向分析确定是否属于有效曲线段;然后,对所有感兴趣曲线段按照标记顺序依次利用椭圆拟合办法初步得到感兴趣椭圆粗略参数,根据拟合结果进而模糊约束Hough变换参数搜索范围,得到精确椭圆参数;最后利用检测结果更新图像空间,删除已经检测到的椭圆,依次进行,直到所有椭圆检测完毕。实验结果表明,该算法在计算、存储消耗上均大大减少。 展开更多
关键词 局部主成分分析 曲线拟合 霍夫变换 参数约束 椭圆检测
在线阅读 下载PDF
局部PCA与k近邻相结合的谱聚类算法 被引量:8
7
作者 吴林 文国秋 +2 位作者 童涛 谭马龙 杜婷婷 《计算机工程与设计》 北大核心 2019年第8期2204-2210,共7页
为解决传统谱聚类方法构造相似矩阵时使用距离度量无法充分反映复杂样本空间的全局一致性,且存在聚类个数需要人为指定等问题,提出一种基于近邻与局部PCA结合的谱聚类算法。使用kNN获取邻域子集,使用局部主成分分析保持样本的局部结构,... 为解决传统谱聚类方法构造相似矩阵时使用距离度量无法充分反映复杂样本空间的全局一致性,且存在聚类个数需要人为指定等问题,提出一种基于近邻与局部PCA结合的谱聚类算法。使用kNN获取邻域子集,使用局部主成分分析保持样本的局部结构,同时考虑样本的全局和局部信息,为相似矩阵提供综合信息,对得到的相似矩阵进行图分割,直接得到聚类的结果。在真实数据集上的实验结果表明,该算法能够自动得到类的个数且聚类准确率有所提高,其在非真实类时有更好的聚类效果。 展开更多
关键词 谱聚类 K-近邻 局部主成分分析 相似矩阵 连通图划分
在线阅读 下载PDF
面向复杂多流形高维数据的t-SNE降维方法 被引量:19
8
作者 边荣正 张鉴 +3 位作者 周亮 蒋鹏 陈宝权 汪云海 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第11期1746-1754,共9页
针对t-SNE方法不能很好地区分相互交叉的多个流形的问题,提出一种可视化降维方法.在t-SNE方法的基础上,在计算高维概率时考虑欧几里得度量和局部主成分分析以区分不同流形.然后可直接使用t-SNE的梯度求解方法得到降维结果.最后分别用3... 针对t-SNE方法不能很好地区分相互交叉的多个流形的问题,提出一种可视化降维方法.在t-SNE方法的基础上,在计算高维概率时考虑欧几里得度量和局部主成分分析以区分不同流形.然后可直接使用t-SNE的梯度求解方法得到降维结果.最后分别用3个人工生成的三维数据集和2个通用的机器学习数据集进行实验,并根据不同流形的区分度和流形内的邻域可信度2个指标对降维结果进行量化分析.结果表明,该方法在处理有交叉的多流形数据时的效果要明显优于原来的t-SNE方法,并能够较好地保持每个流形的邻域结构. 展开更多
关键词 降维方法 局部主成分分析 多流形数据 可视化
在线阅读 下载PDF
基于流形学习的纤维丛模型研究 被引量:5
9
作者 张炯 李凡长 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期477-485,共9页
针对数据的高维性,维数约简成为了热点的研究方向,各种流形学习算法都试图发现高维数据的内在结构与规律,然而都是基于小邻域的学习,如何将全局和局部的数据学习结合起来是一个尚未解决的问题.纤维丛是微分流形中的重要理论,比如线性空... 针对数据的高维性,维数约简成为了热点的研究方向,各种流形学习算法都试图发现高维数据的内在结构与规律,然而都是基于小邻域的学习,如何将全局和局部的数据学习结合起来是一个尚未解决的问题.纤维丛是微分流形中的重要理论,比如线性空间中每个子空间都可以看成是一个纤维,它们的集合是纤维丛.本文在流形学习基础上引入纤维丛,给出纤维丛模型,并提出基于切丛局部主方向的向量空间降维算法,该算法用k-均值划分数据集并在各块上求主成分,由第一主方向组成的切丛截面,在截面流形上进行利用等度规映射(ISOMAP)降维,最后在模拟数据和人脸数据上进行实验说明了算法的有效性. 展开更多
关键词 维数约简 流形学习 局部主成分分析 纤维丛 K-均值
在线阅读 下载PDF
短语音说话人辨认的研究 被引量:7
10
作者 蒋晔 唐振民 《电子学报》 EI CAS CSCD 北大核心 2011年第4期953-957,共5页
针对短语音说话人辨认训练语料不充分的特点,对特征参数和GMM模型进行优化和改进,提出一种基于局部模糊PCA的GMM说话人辨认方法.该方法采用特征组合代替单一特征,以提高有效特征维数来弥补特征样本的不足,并用局部模糊PCA对组合特征进... 针对短语音说话人辨认训练语料不充分的特点,对特征参数和GMM模型进行优化和改进,提出一种基于局部模糊PCA的GMM说话人辨认方法.该方法采用特征组合代替单一特征,以提高有效特征维数来弥补特征样本的不足,并用局部模糊PCA对组合特征进行有效降维,在对识别率影响很小的前提下,降低了系统的时空复杂度.本文还对GMM参数初始化方法进行改进,采用分裂法与模糊k均值聚类相结合方法.实验表明,与传统初始化方法相比该方法能有效提高短语音说话人辨认性能. 展开更多
关键词 说话人辨认 短语音 局部模糊成分分析 分裂法与模糊k均值聚类相结合
在线阅读 下载PDF
基于LPCA的谱聚类算法
11
作者 童涛 文国秋 +2 位作者 谭马龙 吴林 杜婷婷 《计算机应用研究》 CSCD 北大核心 2019年第11期3245-3249,共5页
针对传统谱聚类在构建关系矩阵时只考虑样本的全局特征而忽略样本的局部特征、在聚类划分时通常需要指定聚类个数、无法对交叉点进行正确划分等问题,提出了一种改进的基于局部主成分分析和连通图分解的谱聚类算法。首先自动学习挑选数... 针对传统谱聚类在构建关系矩阵时只考虑样本的全局特征而忽略样本的局部特征、在聚类划分时通常需要指定聚类个数、无法对交叉点进行正确划分等问题,提出了一种改进的基于局部主成分分析和连通图分解的谱聚类算法。首先自动学习挑选数据集的中心点,然后使用局部主成分分析得到数据集的关系矩阵,最后用连通图分解算法完成对关系矩阵的划分。实验结果表明该改进算法性能优于现有经典算法。 展开更多
关键词 局部主成分分析 谱聚类 连通图分解 交叉点
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部