期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
利用DCE-MRI结合改进卷积神经网络的MR图像自动分割与分类方法
被引量:
2
1
作者
杨珍
王俊
辛春花
《重庆理工大学学报(自然科学)》
CAS
北大核心
2020年第2期147-157,共11页
为鉴别乳腺良、恶性肿瘤,利用动态增强磁共振成像(DCE-MRI)技术,结合混合集成的改进卷积神经网络(ME-ICNN),设计了一种计算机辅助诊断(CAD)方法。首先,在预处理阶段对输入的肿瘤图像进行背景缩减、对比度增强和乳房区域裁剪,采用全局Ots...
为鉴别乳腺良、恶性肿瘤,利用动态增强磁共振成像(DCE-MRI)技术,结合混合集成的改进卷积神经网络(ME-ICNN),设计了一种计算机辅助诊断(CAD)方法。首先,在预处理阶段对输入的肿瘤图像进行背景缩减、对比度增强和乳房区域裁剪,采用全局Otsu阈值分割和形态学顶帽变换去除非损伤结构;然后,在定位阶段使用Chan-Vese活动轮廓模型自动选取最佳ROI,采用基于紧致度的滤波方法减少假阳性;最后,在诊断阶段提出一种新的卷积神经网络混合集成模型ME-ICNN,用于乳腺良恶性肿瘤的分类。通过112例DCE-MRI数据库上的实验结果表明:相比其他几种较新的卷积神经网络分类方法,所提出的ME-ICNN方法具有训练和测试执行时间快、自由参数少、分类精度高等优点,可作为放射科专家分析乳腺DCE-MRI图像的有效工具。
展开更多
关键词
图像分割
卷积神经网络
DCE-MRI
混合集成
局部主动轮廓
计算机辅助诊断
在线阅读
下载PDF
职称材料
题名
利用DCE-MRI结合改进卷积神经网络的MR图像自动分割与分类方法
被引量:
2
1
作者
杨珍
王俊
辛春花
机构
内蒙古农业大学计算机技术与信息管理系
出处
《重庆理工大学学报(自然科学)》
CAS
北大核心
2020年第2期147-157,共11页
基金
内蒙古自治区自然科学基金项目(2014MS0616)
江苏省“333工程”科研资助项目(BRA2016177)
文摘
为鉴别乳腺良、恶性肿瘤,利用动态增强磁共振成像(DCE-MRI)技术,结合混合集成的改进卷积神经网络(ME-ICNN),设计了一种计算机辅助诊断(CAD)方法。首先,在预处理阶段对输入的肿瘤图像进行背景缩减、对比度增强和乳房区域裁剪,采用全局Otsu阈值分割和形态学顶帽变换去除非损伤结构;然后,在定位阶段使用Chan-Vese活动轮廓模型自动选取最佳ROI,采用基于紧致度的滤波方法减少假阳性;最后,在诊断阶段提出一种新的卷积神经网络混合集成模型ME-ICNN,用于乳腺良恶性肿瘤的分类。通过112例DCE-MRI数据库上的实验结果表明:相比其他几种较新的卷积神经网络分类方法,所提出的ME-ICNN方法具有训练和测试执行时间快、自由参数少、分类精度高等优点,可作为放射科专家分析乳腺DCE-MRI图像的有效工具。
关键词
图像分割
卷积神经网络
DCE-MRI
混合集成
局部主动轮廓
计算机辅助诊断
Keywords
images segmentation
convolutional neural network
DCE-MRI
mixed integration
locally active contour
computer-aided diagnosis
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
利用DCE-MRI结合改进卷积神经网络的MR图像自动分割与分类方法
杨珍
王俊
辛春花
《重庆理工大学学报(自然科学)》
CAS
北大核心
2020
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部