期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多尺度局部与全局特征提取的时间序列预测网络
1
作者 王静 王济昂 +1 位作者 丁建立 李永华 《计算机工程与设计》 北大核心 2025年第6期1734-1741,共8页
为有效提取序列数据中的局部与全局变化,并对多尺度特征进行建模,提高时间序列预测准确率,提出一种基于多尺度局部与全局特征提取的时间序列预测网络。多尺度特征捕获模块使用多个不同大小的卷积提取序列中多周期的特征;关注对周期性序... 为有效提取序列数据中的局部与全局变化,并对多尺度特征进行建模,提高时间序列预测准确率,提出一种基于多尺度局部与全局特征提取的时间序列预测网络。多尺度特征捕获模块使用多个不同大小的卷积提取序列中多周期的特征;关注对周期性序列的建模,利用多尺度时序分离模块,使用平均池化分离得到时间序列的周期性和趋势性部分;局部与全局特征模块对序列中的局部变化和全局趋势进行建模。实验结果表明,所提算法在4个数据集上的预测效果均优于相关基线算法。 展开更多
关键词 多维时间序列预测 局部与全局特征 多尺度 卷积神经网络 时序分解 特征提取 深度学习
在线阅读 下载PDF
基于文本引导对抗哈希的跨模态检索方法 被引量:2
2
作者 朱杰 《计算机应用研究》 CSCD 北大核心 2022年第2期628-632,共5页
随着深度学习方法的不断发展,跨模态哈希检索技术也取得了长足的进步。但是,目前的跨模态哈希检索方法通常基于两种假设:a)相似文本描述的图像内容也相似;b)相同类别的图像有着较好的全局相似性。但是,真实数据集中的数据往往不能满足... 随着深度学习方法的不断发展,跨模态哈希检索技术也取得了长足的进步。但是,目前的跨模态哈希检索方法通常基于两种假设:a)相似文本描述的图像内容也相似;b)相同类别的图像有着较好的全局相似性。但是,真实数据集中的数据往往不能满足以上两种假设,导致了跨模态哈希检索模型性能的降低。针对以上两个问题,提出了一种基于文本引导对抗哈希的跨模态检索方法(text-guided adversarial hashing for cross-modal retrieval,TAH),此方法在构建的网络结构基础上,将文本哈希码作为训练图像网络的基础,并将图像的局部特征与全局特征结合用于表示图像内容。此外,还针对性地提出了文本模态内全局一致性损失、模态间局部与全局一致性损失和分类对抗损失用于训练跨模态网络。实验证明,TAH可以在三个数据集中取得良好的检索性能。 展开更多
关键词 文本特征 图像局部与全局特征 跨模态检索 哈希码
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部