期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于空频协同的CNN-Transformer多器官分割网络
1
作者 王梦溪 雷涛 +3 位作者 姜由涛 刘乐 刘少庆 王营博 《智能系统学报》 北大核心 2025年第5期1266-1280,共15页
针对目前主流的医学多器官分割网络未能充分利用卷积神经网络(convolutional neural network,CNN)的局部细节提取优势以及Transformer的全局信息捕获潜力,并缺乏空频特征协同建模的问题,提出了一种基于空频协同的CNN-Transformer双分支... 针对目前主流的医学多器官分割网络未能充分利用卷积神经网络(convolutional neural network,CNN)的局部细节提取优势以及Transformer的全局信息捕获潜力,并缺乏空频特征协同建模的问题,提出了一种基于空频协同的CNN-Transformer双分支编解码网络。该网络在局部分支中设计了空频协同注意力,使网络从频域和空间域捕获到更为丰富的局部细节信息;在全局分支设计了多视图频域提取器,该模块通过频谱层和自注意力层联合建模,提高了模型的空频特征协同建模能力和泛化性能。此外,设计了局部与全局特征融合模块,有效整合了CNN分支的局部细节信息和Transformer分支的全局信息,解决了网络无法兼顾局部细节和全局感受野的难题。实验结果表明,该架构克服了医学图像中器官边界模糊导致误分割的问题,有效提升了多器官分割精度,同时计算成本更低,参数量更少。 展开更多
关键词 多器官分割 空频协同 多视图频域 注意力机制 CNN TRANSFORMER 协同注意力 局部−全局特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部