期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
基于遗传算法改进的少数类样本合成过采样技术的非平衡数据集分类算法 被引量:19
1
作者 霍玉丹 谷琼 +1 位作者 蔡之华 袁磊 《计算机应用》 CSCD 北大核心 2015年第1期121-124,139,共5页
针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍... 针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍率,并将这些采样倍率取值的组合编码为种群中的个体;然后,循环使用GA的选择、交叉、变异等算子对种群进行优化,在达到停机条件时获得采样倍率取值的最优组合;最后,根据找到的最优组合对非平衡数据集进行SMOTE采样。在10个典型的非平衡数据集上进行的实验结果表明:与SMOTE算法相比,GASMOTE在F-measure值上提高了5.9个百分点,在G-mean值上提高了1.6个百分点;与Borderline-SMOTE算法相比,GASMOTE在F-measure值上提高了3.7个百分点,在G-mean值上提高了2.3个百分点。该方法可作为一种新的解决非平衡数据集分类问题的过采样技术。 展开更多
关键词 非平衡数据集 样本合成过采样技术 采样倍率 遗传算法
在线阅读 下载PDF
针对样本类不平衡的深度残差网络电力系统暂态稳定评估方法 被引量:3
2
作者 刘颂凯 党喜 +3 位作者 崔梓琪 杨超 阮肇华 袁铭洋 《智慧电力》 北大核心 2024年第1期116-123,共8页
系统的量测数据可能受到噪声以及样本类分布不平衡问题的影响,导致基于数据驱动的暂态稳定评估模型性能下降。提出一种针对样本类不平衡的的深度残差网络电力系统暂态稳定评估方法。首先,利用改进过采样技术为滤除噪声的少数类样本构造... 系统的量测数据可能受到噪声以及样本类分布不平衡问题的影响,导致基于数据驱动的暂态稳定评估模型性能下降。提出一种针对样本类不平衡的的深度残差网络电力系统暂态稳定评估方法。首先,利用改进过采样技术为滤除噪声的少数类样本构造所需的新样本,改善样本类不平衡问题,并减少噪声的影响;然后,基于深度残差网络构建电力系统暂态稳定评估模型,解决梯度消失导致的模型性能退化问题,提高模型的鲁棒性和准确性;最后,在新英格兰10机39节点和47机140节点系统上的仿真结果表明,所提方法能减小噪声干扰、降低不平衡数据集所带来的影响和减少计算复杂度。 展开更多
关键词 暂态稳定评估 噪声问题 样本分布不平衡 改进合成过采样技术 深度残差网络
在线阅读 下载PDF
SMOTE类算法研究综述 被引量:10
3
作者 王晓霞 李雷孝 林浩 《计算机科学与探索》 CSCD 北大核心 2024年第5期1135-1159,共25页
合成少数类过采样技术(SMOTE)因能有效处理少数类样本已成为处理不平衡数据的主流方法之一,而且许多SMOTE改进算法已被提出,但目前已有的调研极少考虑到流行的算法级改进方法。因此对现有SMOTE类算法进行更全面的分析与总结。首先详细... 合成少数类过采样技术(SMOTE)因能有效处理少数类样本已成为处理不平衡数据的主流方法之一,而且许多SMOTE改进算法已被提出,但目前已有的调研极少考虑到流行的算法级改进方法。因此对现有SMOTE类算法进行更全面的分析与总结。首先详细阐述了SMOTE方法的基本原理,然后主要从数据级、算法级两个层面系统性地梳理分析SMOTE类算法,并介绍数据级和算法级混合改进的新思路。数据级改进是在预处理时通过不同操作删除或添加数据来平衡数据分布;算法级改进不会改变数据分布,主要通过修改或创建算法来加强对少数类样本的关注度。二者相比,数据级方法应用受限更少,算法级改进的算法鲁棒性普遍更高。为了更全面地提供SMOTE类算法的基础研究材料,最后列出常用数据集、评价指标,给出未来可能尝试进行的研究思路,以更好地应对不平衡数据问题。 展开更多
关键词 不平衡数据 合成过采样技术(smote) 过采样 监督学习
在线阅读 下载PDF
面向非平衡多分类问题的二次合成QSMOTE方法 被引量:3
4
作者 韩明鸣 郭虎升 王文剑 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第1期1-13,共13页
近年来非平衡多分类数据的学习问题在机器学习和数据挖掘领域备受关注,上采样技术成为解决数据不平衡问题的主要方法,然而已有的上采样技术仍有很多的不足,例如新合成的少数类样本仍可能分布在对应少数类样本的原始区域内,不能有效改善... 近年来非平衡多分类数据的学习问题在机器学习和数据挖掘领域备受关注,上采样技术成为解决数据不平衡问题的主要方法,然而已有的上采样技术仍有很多的不足,例如新合成的少数类样本仍可能分布在对应少数类样本的原始区域内,不能有效改善数据分布的不平衡情况.此外,若原始样本中不同类别样本分布存在重叠,则新合成的样本会更容易偏离到其他类样本分布中,从而造成过泛化现象,影响少数类样本的分类精度.为解决上述问题,提出一种二次合成的上采样方法(Quadratic Synthetic Minority Over-sampling Technique,QSMOTE).首先通过少数类样本的支持度选择包含重要信息的样本来进行第一次合成,然后通过分析指定少数类样本质心的邻域内样本分布情况来调整第二次样本合成范围,并最终进行第二次合成.在UCI和MNIST数据集上的实验结果表明,QSMOTE不仅可以改善数据分布的不平衡问题,而且可以尽可能地减少过泛化现象,特别是对少数类样本的分类准确率有大幅提升. 展开更多
关键词 非平衡问题 过泛化 重叠 合成采样技术(smote)
在线阅读 下载PDF
小样本下基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断
5
作者 葛平淑 王朝阳 +3 位作者 王阳 张涛 薛红涛 夏晨迪 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第8期1-9,共9页
轮毂电机复杂多变的运行环境可能导致轴承故障而危及电动车辆行驶安全,为解决传统故障诊断方法在小样本条件下识别精度低的问题,提出一种基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断方法。首先,通过合成少数过采样技术(SMOTE)扩展训练数据... 轮毂电机复杂多变的运行环境可能导致轴承故障而危及电动车辆行驶安全,为解决传统故障诊断方法在小样本条件下识别精度低的问题,提出一种基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断方法。首先,通过合成少数过采样技术(SMOTE)扩展训练数据集,生成与真实样本分布相似的故障样本,并使用主成分分析(PCA)优化其时域和频域的特征。然后,通过引入非线性收敛因子和Levy飞行策略改进传统的灰狼优化算法(GWO),使用改进的灰狼优化算法(IGWO)优化随机森林(RF)模型的参数。最后,基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断模型实现故障状态的识别,并在轮毂电机试验台架上进行了实验验证。结果表明,所提出的轮毂电机轴承故障诊断方法在7种转速工况下平均准确率均超过96%,具有高精度和稳定性。与遗传算法(GA)、粒子群优化算法(PSO)、GWO优化RF相比,提出的IGWO-RF模型在3种小样本训练集下的诊断准确率均超过90%,且准确率均明显高于其他3个对比算法,能够有效实现小样本条件下的轮毂电机轴承故障诊断。 展开更多
关键词 轮毂电机 轴承 合成过采样技术(smote) 改进灰狼优化算法(IGWO) 随机森林(RF) 故障诊断
在线阅读 下载PDF
基于主动学习SMOTE的非均衡数据分类 被引量:23
6
作者 张永 李卓然 刘小丹 《计算机应用与软件》 CSCD 北大核心 2012年第3期91-93,162,共4页
少数类样本合成过采样技术(SMOTE)是一种典型的过采样数据预处理方法,它能够有效平衡非均衡数据,但会带来噪音等问题,影响分类精度。为解决此问题,借助主动学习支持向量机的分类性能,提出一种基于主动学习SMOTE的非均衡数据分类方法 ALS... 少数类样本合成过采样技术(SMOTE)是一种典型的过采样数据预处理方法,它能够有效平衡非均衡数据,但会带来噪音等问题,影响分类精度。为解决此问题,借助主动学习支持向量机的分类性能,提出一种基于主动学习SMOTE的非均衡数据分类方法 ALSMOTE。由于主动学习支持向量机采用基于距离的主动选择最佳样本的学习策略,因此能够主动选择非均衡数据中的有价值的多数类样本,舍弃价值较小的样本,从而提高运算效率,改进SMOTE带来的问题。首先运用SMOTE方法均衡小部分样本,得到初始分类器;然后利用主动学习策略调整分类器精度。实验结果表明,该方法有效提高了非均衡数据的分类准确率。 展开更多
关键词 主动学习 不平衡数据集 样本合成过采样技术 支持向量机
在线阅读 下载PDF
构造性覆盖算法的SMOTE过采样方法 被引量:10
7
作者 严远亭 朱原玮 +2 位作者 吴增宝 张以文 张燕平 《计算机科学与探索》 CSCD 北大核心 2020年第6期975-984,共10页
如何提高对少数类样本的识别能力是不平衡数据分类中的一个研究热点。合成少数类过采样技术(SMOTE)是解决此类问题的代表性方法之一。近年来,不少研究者对SMOTE做出了一些改进,较好地提高了该方法的性能。然而,如何有效地选取典型少数... 如何提高对少数类样本的识别能力是不平衡数据分类中的一个研究热点。合成少数类过采样技术(SMOTE)是解决此类问题的代表性方法之一。近年来,不少研究者对SMOTE做出了一些改进,较好地提高了该方法的性能。然而,如何有效地选取典型少数类样本进行过采样仍然是一个值得研究的问题。此外,被孤立的少数样本在提高模型性能方面的潜在能力也没有得到足够的重视。针对上述问题,提出了基于构造性覆盖算法(CCA)的过采样技术CMOTE。CMOTE提供了两种不同策略下选择关键样本的方法:基于覆盖内样本个数的方法与基于覆盖密度的方法。在12个典型的不平衡数据集上验证CMOTE算法的性能。实验结果表明,CMOTE算法在总体上优于对比方法,并且通过强化关键样本对模型性能的影响增强了模型的泛化能力。 展开更多
关键词 不平衡数据 过采样技术 合成过采样技术(smote) 构造性覆盖算法(CCA)
在线阅读 下载PDF
基于SMOTE算法和条件生成对抗网络的到港航班延误分类预测 被引量:7
8
作者 刘博 卢婷婷 +1 位作者 张兆宁 张健斌 《科学技术与工程》 北大核心 2021年第34期14843-14852,共10页
由于航班延误数据集类别分布不均,传统分类器的性能受到一定程度的制约。为了能够对到港航班延误情况进行精准预测,提出了一种基于合成少数类过采样技术(synthetic minority oversampling technique,SMOTE)算法和条件生成对抗网络(condi... 由于航班延误数据集类别分布不均,传统分类器的性能受到一定程度的制约。为了能够对到港航班延误情况进行精准预测,提出了一种基于合成少数类过采样技术(synthetic minority oversampling technique,SMOTE)算法和条件生成对抗网络(conditional generative adversarial nets,CGAN)的航班延误预测模型。首先,利用SMOTE算法对原始数据集进行上采样,并融合经过训练的CGAN生成指定样本数据集,缓解原始数据集中某些类别样本量少和数据非平衡等问题;再次,采用XGBoost模型在4种模式训练集上进行训练和超参数寻优;最后,以K近邻、支持向量机和随机森林为基准模型进行性能对比分析。经试验分析,通过分类器在融合样本集的训练,整体上可以在一定程度上提高模型的泛化性,尤其在轻度延误和中度延误类别中提升较为明显,与不采用融合方法比较,宏平均下的Precision、Recall、F_(1)-score值分别提升了0.16、0.29、0.24个百分点。实验结果表明,该方法能够有效地对航班延误非平衡数据进行建模,在保持模型整体性能较高的前提下,能够显著地提升少数类的预测能力,可以为空管、航空公司和机场等提供决策依据。 展开更多
关键词 航班延误 非平衡数据集 合成过采样技术(smote)算法 条件生成对抗网络 XGBoost模型 问题
在线阅读 下载PDF
基于混合采样的非平衡数据分类算法 被引量:20
9
作者 吴艺凡 梁吉业 王俊红 《计算机科学与探索》 CSCD 北大核心 2019年第2期342-349,共8页
过采样和欠采样方法是处理非平衡数据集分类的常用方法,但使用单一的采样算法可能造成少数类样本过拟合或者丢失含有重要信息的样本。提出了基于分类超平面的混合采样算法SVM_HS(hybrid sampling algorithm based on support vector mac... 过采样和欠采样方法是处理非平衡数据集分类的常用方法,但使用单一的采样算法可能造成少数类样本过拟合或者丢失含有重要信息的样本。提出了基于分类超平面的混合采样算法SVM_HS(hybrid sampling algorithm based on support vector machine),旨在克服SVM算法在处理非平衡数据时分类超平面容易偏向少数类样本的问题。该算法首先利用SVM算法得到分类超平面。然后迭代进行混合采样,主要包括:(1)删除离分类超平面较远的一些多数类样本;(2)对靠近真实类边界的少数类样本用SMOTE(synthetic minority oversampling technique)过采样,使分类超平面向着真实类边界方向偏移。实验结果表明相比其他相关算法,该算法的F-value值和G-mean值均有较大提高。 展开更多
关键词 非平衡 支持向量机(SVM) 样本过采样技术(smote) 超平面 混合采样
在线阅读 下载PDF
基于改进SMOTE的制造过程不平衡数据分类策略 被引量:6
10
作者 黎旭 陈家兑 +1 位作者 吴永明 宗文泽 《计算机工程与应用》 CSCD 北大核心 2022年第16期284-291,共8页
不平衡数据分析是智能制造的关键技术之一,其分类问题已成为机器学习和数据挖掘的研究热点。针对目前不平衡数据过采样策略中人工合成数据边缘化且需要降噪处理的问题,提出一种基于改进SMOTE(synthetic minority oversampling technique... 不平衡数据分析是智能制造的关键技术之一,其分类问题已成为机器学习和数据挖掘的研究热点。针对目前不平衡数据过采样策略中人工合成数据边缘化且需要降噪处理的问题,提出一种基于改进SMOTE(synthetic minority oversampling technique)和局部离群因子(local outlier factor,LOF)的过采样算法。首先对整个数据集进行K-means聚类,筛选出高可靠性样本进行改进SMOTE算法过采样,然后采用LOF算法删除误差大的人工合成样本。在4个UCI不平衡数据集上的实验结果表明,该方法对不平衡数据中少数类的分类能力更强,有效地克服了数据边缘化问题,将算法应用于磷酸生产中的不平衡数据,实现了该不平衡数据的准确分类。 展开更多
关键词 不平衡数据 过采样 局部离群因子 合成过采样技术(smote)
在线阅读 下载PDF
滑坡易发性评价中样本不均衡问题处理研究 被引量:4
11
作者 田尤 高波 +4 位作者 殷红 李元灵 张佳佳 陈龙 李洪梁 《水文地质工程地质》 CAS CSCD 北大核心 2024年第6期171-181,共11页
滑坡易发性评价中,样本不均衡问题的不同处理方案通常会带来评价结果的大量不确定性。针对这一问题,以藏东昌都市部分县(区)为研究区,构建滑坡/非滑坡样本不均衡数据集,采用不处理、下采样和合成少数类过采样(synthetic minority oversa... 滑坡易发性评价中,样本不均衡问题的不同处理方案通常会带来评价结果的大量不确定性。针对这一问题,以藏东昌都市部分县(区)为研究区,构建滑坡/非滑坡样本不均衡数据集,采用不处理、下采样和合成少数类过采样(synthetic minority oversampling technique,SMOTE)3种处置方案,运用逻辑回归方法分别构建滑坡易发性评价模型。基于ROC曲线、准确度、精确率、召回率、漏检率等评价指标,采用综合评价指标F_(1)′同数对模型分类的精度进行验证。结果表明:数据处理成均衡数据集(过采样/下采样)建立的模型效果较不处理数据建立的模型效果有了大幅提升,F_(1)′同数的值最大提高了53.17%;在下采样、过采样两种数据处理方案中,过采样方法比下采样方法F_(1)′分数的值提高了16.30%,表明过采样方法对处理样本不均衡数据问题方面具有较好效果。研究成果可为滑坡预测和地质灾害预测前的数据集处理提供参考,为进一步提高区域防灾减灾水平提供理论与技术支持。 展开更多
关键词 滑坡易发性 合成过采样技术 评价模型 昌都市 样本不均衡数据
在线阅读 下载PDF
基于改进SMOTE的不平衡数据挖掘方法研究 被引量:31
12
作者 杨智明 乔立岩 彭喜元 《电子学报》 EI CAS CSCD 北大核心 2007年第B12期22-26,共5页
少类样本合成过采样技术(SMOTE)是一种新型的过采样方法,能够有效地处理不平衡数据分类问题,但SMOTE在产生合成样本的过程中,存在一定的盲目性.因此本文提出一种改进的过采样方法一自适应SMOTE,根据样本集内部分布特性,自适应调... 少类样本合成过采样技术(SMOTE)是一种新型的过采样方法,能够有效地处理不平衡数据分类问题,但SMOTE在产生合成样本的过程中,存在一定的盲目性.因此本文提出一种改进的过采样方法一自适应SMOTE,根据样本集内部分布特性,自适应调整SMOTE方法中近邻选择策略,控制合成样本的质量.算法分析和仿真结果表明,文中提出的方法在不影响计算复杂度的前提下,有效地提高了分类算法的整体分类准确率。 展开更多
关键词 不平衡数据集 样本合成过采样技术 自适应smote 合成样本 近邻选择策略
在线阅读 下载PDF
面向不平衡数据集的改进型SMOTE算法 被引量:26
13
作者 王超学 张涛 马春森 《计算机科学与探索》 CSCD 2014年第6期727-734,共8页
针对SMOTE(synthetic minority over-sampling technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法GA-SMOTE。该算法的关键将是遗传算法中的3个基本算子引入到SMOTE中,利用选择算子实现对少数类样本有区别的选择,使... 针对SMOTE(synthetic minority over-sampling technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法GA-SMOTE。该算法的关键将是遗传算法中的3个基本算子引入到SMOTE中,利用选择算子实现对少数类样本有区别的选择,使用交叉、变异算子实现对合成样本质量的控制。结合GA-SMOTE与SVM(support vector machine)算法来处理不平衡数据的分类问题。UCI数据集上的大量实验表明,GA-SMOTE在新样本的整体合成效果上表现出色,有效提高了SVM在不平衡数据集上的分类性能。 展开更多
关键词 不平衡数据集 遗传算子 样本合成过采样技术(smote) SYNTHETIC MINORITY OVER-SAMPLING technique (smote)
在线阅读 下载PDF
一种基于SVM的非均衡数据集过采样方法 被引量:17
14
作者 张忠林 冯宜邦 赵中恺 《计算机工程与应用》 CSCD 北大核心 2020年第23期220-228,共9页
针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on... 针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on SVM)。SVMOM通过迭代合成样本。在迭代过程中,通过SVM得到分类超平面;根据每个少数类样本到分类超平面的距离赋予样本距离权重;同时考虑少数类样本的类内平衡,根据样本的分布计算样本的密度,赋予样本密度权重;依据样本的距离权重和密度权重计算每个少数类样本的选择权重,根据样本的选择权重选择样本运用SMOTE合成新样本,达到平衡数据集的目的。实验结果表明,提出的算法在一定程度上解决了分类结果偏向多数类的问题,验证了算法的有效性。 展开更多
关键词 不平衡数据 支持向量机(SVM) 过采样 样本权重 合成过采样技术(smote)
在线阅读 下载PDF
基于不平衡数据集的主动学习分类算法 被引量:8
15
作者 赵小强 刘梦依 《控制工程》 CSCD 北大核心 2019年第2期314-319,共6页
针对不平衡数据集在分类过程中易产生噪声数据和分类精度低的问题,提出一种基于改进SMOTE的不平衡数据集主动学习SVM分类算法。该算法对训练样本集利用少数类样本的归属值通过多数票选择法控制合成少数类样本的数量,以距离公式为衡量标... 针对不平衡数据集在分类过程中易产生噪声数据和分类精度低的问题,提出一种基于改进SMOTE的不平衡数据集主动学习SVM分类算法。该算法对训练样本集利用少数类样本的归属值通过多数票选择法控制合成少数类样本的数量,以距离公式为衡量标准划分超平面,在分类超平面两侧选择最近距离的等量对称的多数类样本,组成平衡采样数据集,利用支持向量机(SVM)进行分类得到优化分类器,再用主动学习对去除了训练样本的不平衡数据集利用优化分类器进行分类循环,直到剩余样本为零。利用UCI数据集中的数据实验表明,该算法有效地减少了噪声数据对分类的影响,并有效改善不平衡数据集的分类精度。 展开更多
关键词 数据挖掘 不平衡数据集 样本合成过采样技术
在线阅读 下载PDF
针对不平衡数据的过采样和随机森林改进算法 被引量:39
16
作者 张家伟 郭林明 杨晓梅 《计算机工程与应用》 CSCD 北大核心 2020年第11期39-45,共7页
针对数据不平衡带来的少数类样本识别率低的问题,提出通过加权策略对过采样和随机森林进行改进的算法,从数据预处理和算法两个方面降低数据不平衡对分类器的影响。数据预处理阶段应用合成少数类过采样技术(Synthetic Minority Oversampl... 针对数据不平衡带来的少数类样本识别率低的问题,提出通过加权策略对过采样和随机森林进行改进的算法,从数据预处理和算法两个方面降低数据不平衡对分类器的影响。数据预处理阶段应用合成少数类过采样技术(Synthetic Minority Oversampling Technique,SMOTE)降低数据不平衡度,每个少数类样本根据其相对于剩余样本的欧氏距离分配权重,使每个样本合成不同数量的新样本。算法改进阶段利用Kappa系数评价随机森林中决策树训练后的分类效果,并赋予每棵树相应的权重,使分类能力更好的树在投票阶段有更大的投票权,提高随机森林算法对不平衡数据的整体分类性能。在KEEL数据集上的实验表明,与未改进算法相比,改进后的算法对少数类样本分类准确率和整体样本分类性能有所提升。 展开更多
关键词 数据不平衡 合成过采样技术(smote) Kappa系数 随机森林
在线阅读 下载PDF
基于深度森林和DNA甲基化的癌症分类研究 被引量:8
17
作者 刘超 吴申 +1 位作者 郑一超 侯维岩 《计算机工程与应用》 CSCD 北大核心 2020年第13期189-193,共5页
作为人类基因组重要的表观遗传现象,DNA甲基化对基因的表达发挥着重要的调控作用,与癌症的关系密切。针对癌症基因组图谱(TCGA)庞大数据的类不平衡和高维度,致使假阴率大幅增加的问题,提出了一种混合采样的不平衡数据集成分类算法,使用... 作为人类基因组重要的表观遗传现象,DNA甲基化对基因的表达发挥着重要的调控作用,与癌症的关系密切。针对癌症基因组图谱(TCGA)庞大数据的类不平衡和高维度,致使假阴率大幅增加的问题,提出了一种混合采样的不平衡数据集成分类算法,使用合成少数过采样(SMOTE)算法生成新的少数类样本,得到扩充后的数据集,通过Tomek Link算法剔除样本扩充过程中引入的噪声,得到相对平衡的数据集。在此基础上,利用深度森林(gcForest)算法的级联森林结构,每一层选取两种随机森林结构,以增强模型的泛化能力,得到最终的分类模型。对6种癌症的DNA甲基化数据实验表明混合采样的不平衡数据集成分类算法在保证多数类分类精度的前提下,有效地提高了对于少数类的灵敏度。 展开更多
关键词 DNA甲基化 癌症基因组图谱(TCGA) 合成采样技术(smote) Tomek Link算法 gcForest算法
在线阅读 下载PDF
基于数据生成模型的仿真样本点插补方法
18
作者 何玉林 陈佳琪 +2 位作者 徐贺鹏 黄哲学 尹剑飞 《系统仿真学报》 CAS CSCD 北大核心 2023年第9期1948-1964,共17页
为解决插补的仿真样本点与真实样本点概率分布不一致的问题,提出了基于数据生成模型的仿真样本点插补方法。基于高斯混合模型构建真实样本点的数据生成模型,其对应的高斯混合模型构件数通过多模型融合的策略确定;利用在真实样本点上获... 为解决插补的仿真样本点与真实样本点概率分布不一致的问题,提出了基于数据生成模型的仿真样本点插补方法。基于高斯混合模型构建真实样本点的数据生成模型,其对应的高斯混合模型构件数通过多模型融合的策略确定;利用在真实样本点上获得的数据生成模型插补所需的仿真样本点,其中数据生成模型的构件以及构件权重用于控制仿真样本点的生成方式。在20个多模多维混合分布上对新方法的可行性和有效性进行了验证,实验结果表明,与随机样本点插补、合成少类过采样技术及其两种最新的变体等4种方法相比,本文方法能够获得更具概率分布一致性的仿真样本点,证实该方法是一种合理的仿真样本点插补方法。 展开更多
关键词 仿真样本点插补 数据生成模型 高斯混合模型 合成过采样技术 概率分布一致
在线阅读 下载PDF
不平衡数据集异常检测和分类算法 被引量:3
19
作者 樊芮 陈湘媛 +1 位作者 王冠男 崔艳辉 《电力系统及其自动化学报》 CSCD 北大核心 2023年第9期112-119,共8页
针对传统异常检测模型在面对不平衡样本集时存在参数优化困难、少数类识别效果差等问题,提出一种组合模型以实现不平衡数据集的异常检测和分类。首先利用支撑向量数据描述构造闭合曲面实现“异常”检测,然后提出改进少数样本合成技术对... 针对传统异常检测模型在面对不平衡样本集时存在参数优化困难、少数类识别效果差等问题,提出一种组合模型以实现不平衡数据集的异常检测和分类。首先利用支撑向量数据描述构造闭合曲面实现“异常”检测,然后提出改进少数样本合成技术对“异常”数据进行过采样以构建平衡数据集,最后利用所提最大类间-类内距K-均值聚类进行自动聚类,实现3种异常数据的分类判决。结果表明,所提方法能够获得较高的异常检测和分类性能,并且具有较强的泛化能力。 展开更多
关键词 异常检测及分 不平衡数据 最大间-内距K-均值聚 样本合成技术 过采样
在线阅读 下载PDF
基于电机数据图像化的多时序变量间接卡车误吊起检测
20
作者 刘嘉杰 刘国平 胡文山 《计算机工程》 CAS CSCD 北大核心 2024年第10期370-380,共11页
自动化集装箱码头的装卸作业中经常发生集装箱与卡车同时被吊起的安全事故,导致人员伤亡及货品、车辆的损坏。为解决该问题,提出一种基于电机数据图像化处理的多时序变量间接卡车误吊起检测方法(MEIN)。该方法通过神经网络分析异步电机... 自动化集装箱码头的装卸作业中经常发生集装箱与卡车同时被吊起的安全事故,导致人员伤亡及货品、车辆的损坏。为解决该问题,提出一种基于电机数据图像化处理的多时序变量间接卡车误吊起检测方法(MEIN)。该方法通过神经网络分析异步电机在吊起集装箱和卡车的过程中产生的电流和电压异常,从而判断是否发生了误吊起事故。采集吊机的三相电流和电压数据,并基于物理公式进行特征工程计算出多个相关时序物理量,采用滑动窗口、SMOTE-Tomek综合采样的方式扩大样本总数并平衡类别数量,最后将多时序变量转换为图像的形式以EfficientNet进行分类。实验结果表明,该方法能在复杂的环境下(例如雨雾天气或轮胎被遮挡)保持稳定的检测性能,各测试地区的AUC均在0.997以上。相较于传统的基于激光雷达和计算机视觉的检测方法,MEIN方法具有成本低、精度高、计算量小并且抗环境干扰能力强等优点。该方法已在武汉、青岛、钦州、梅山等多地部署,为提高自动化集装箱码头的作业安全提供一种有效的解决方案。 展开更多
关键词 时间序列分 卷积神经网络 合成样本过采样技术 Tomek Links欠采样技术 卡车误吊起检测
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部