期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
基于遗传算法改进的少数类样本合成过采样技术的非平衡数据集分类算法 被引量:19
1
作者 霍玉丹 谷琼 +1 位作者 蔡之华 袁磊 《计算机应用》 CSCD 北大核心 2015年第1期121-124,139,共5页
针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍... 针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍率,并将这些采样倍率取值的组合编码为种群中的个体;然后,循环使用GA的选择、交叉、变异等算子对种群进行优化,在达到停机条件时获得采样倍率取值的最优组合;最后,根据找到的最优组合对非平衡数据集进行SMOTE采样。在10个典型的非平衡数据集上进行的实验结果表明:与SMOTE算法相比,GASMOTE在F-measure值上提高了5.9个百分点,在G-mean值上提高了1.6个百分点;与Borderline-SMOTE算法相比,GASMOTE在F-measure值上提高了3.7个百分点,在G-mean值上提高了2.3个百分点。该方法可作为一种新的解决非平衡数据集分类问题的过采样技术。 展开更多
关键词 非平衡数据集 分类 少数样本合成过采样技术 采样倍率 遗传算法
在线阅读 下载PDF
样本不平衡条件下煤矿突水水源识别——以谢桥煤矿为例
2
作者 王彦彬 闫晓杉 《安全与环境学报》 北大核心 2025年第7期2553-2561,共9页
为了有效识别煤矿突水水源,以保障煤矿安全生产,使用合成少数类过采样技术(Synthetic Minority Oversampling Technique, SMOTE)补充少数类样本,继而采用支持向量机(Support Vector Machine, SVM)模型对突水水源进行识别。试验选取96条... 为了有效识别煤矿突水水源,以保障煤矿安全生产,使用合成少数类过采样技术(Synthetic Minority Oversampling Technique, SMOTE)补充少数类样本,继而采用支持向量机(Support Vector Machine, SVM)模型对突水水源进行识别。试验选取96条谢桥煤矿水化学数据进行分析,首先对样本数据进行标准化处理和主成分分析(Principal Component Analysis, PCA),将数据集划分为训练集和测试集,对训练集中少数类样本采用SMOTE法生成新的样本,然后采用改进混沌哈里斯鹰优化(Chaos Harris Hawks Optimization, CHHO)算法结合十折交叉验证优化支持向量机惩罚因子C和径向基函数(Radial Basis Function, RBF)核的参数γ,根据优化结果建立突水水源识别模型,对测试集中突水水源进行识别。将该方法与朴素贝叶斯、随机森林所得结果进行比较,结果显示,采用本方法对测试集识别结果准确性优于其他两种方法,表明该方法在突水水源识别上具有良好的实用性和有效性。 展开更多
关键词 安全工程 突水水源识别 主成分分析 合成少数过采样技术 混沌哈里斯鹰优化算法 支持向量机
在线阅读 下载PDF
面向不平衡图像数据的对抗自编码器过采样算法 被引量:2
3
作者 职为梅 常智 +1 位作者 卢俊华 耿正乾 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第11期4208-4218,共11页
许多适用于低维数据的传统不平衡学习算法在图像数据上的效果并不理想。基于生成对抗网络(GAN)的过采样算法虽然可以生成高质量图像,但在类不平衡情况下容易产生模式崩溃问题。基于自编码器(AE)的过采样算法容易训练,但生成的图像质量... 许多适用于低维数据的传统不平衡学习算法在图像数据上的效果并不理想。基于生成对抗网络(GAN)的过采样算法虽然可以生成高质量图像,但在类不平衡情况下容易产生模式崩溃问题。基于自编码器(AE)的过采样算法容易训练,但生成的图像质量较低。为进一步提高过采样算法在不平衡图像中生成样本的质量和训练的稳定性,该文基于生成对抗网络和自编码器的思想提出一种融合自编码器和生成对抗网络的过采样算法(BAEGAN)。首先在自编码器中引入一个条件嵌入层,使用预训练的条件自编码器初始化GAN以稳定模型训练;然后改进判别器的输出结构,引入一种融合焦点损失和梯度惩罚的损失函数以减轻类不平衡的影响;最后从潜在向量的分布映射中使用合成少数类过采样技术(SMOTE)来生成高质量的图像。在4个图像数据集上的实验结果表明该算法在生成图像质量和过采样后的分类性能上优于具有辅助分类器的条件生成对抗网络(ACGAN)、平衡生成对抗网络(BAGAN)等过采样算法,能有效解决图像数据中的类不平衡问题。 展开更多
关键词 不平衡图像数据 过采样 生成对抗网络 对抗自编码器 合成少数过采样技术
在线阅读 下载PDF
滑坡易发性评价中样本不均衡问题处理研究 被引量:4
4
作者 田尤 高波 +4 位作者 殷红 李元灵 张佳佳 陈龙 李洪梁 《水文地质工程地质》 CAS CSCD 北大核心 2024年第6期171-181,共11页
滑坡易发性评价中,样本不均衡问题的不同处理方案通常会带来评价结果的大量不确定性。针对这一问题,以藏东昌都市部分县(区)为研究区,构建滑坡/非滑坡样本不均衡数据集,采用不处理、下采样和合成少数类过采样(synthetic minority oversa... 滑坡易发性评价中,样本不均衡问题的不同处理方案通常会带来评价结果的大量不确定性。针对这一问题,以藏东昌都市部分县(区)为研究区,构建滑坡/非滑坡样本不均衡数据集,采用不处理、下采样和合成少数类过采样(synthetic minority oversampling technique,SMOTE)3种处置方案,运用逻辑回归方法分别构建滑坡易发性评价模型。基于ROC曲线、准确度、精确率、召回率、漏检率等评价指标,采用综合评价指标F_(1)′同数对模型分类的精度进行验证。结果表明:数据处理成均衡数据集(过采样/下采样)建立的模型效果较不处理数据建立的模型效果有了大幅提升,F_(1)′同数的值最大提高了53.17%;在下采样、过采样两种数据处理方案中,过采样方法比下采样方法F_(1)′分数的值提高了16.30%,表明过采样方法对处理样本不均衡数据问题方面具有较好效果。研究成果可为滑坡预测和地质灾害预测前的数据集处理提供参考,为进一步提高区域防灾减灾水平提供理论与技术支持。 展开更多
关键词 滑坡易发性 合成少数过采样技术 评价模型 昌都市 样本不均衡数据
在线阅读 下载PDF
针对样本类不平衡的深度残差网络电力系统暂态稳定评估方法 被引量:3
5
作者 刘颂凯 党喜 +3 位作者 崔梓琪 杨超 阮肇华 袁铭洋 《智慧电力》 北大核心 2024年第1期116-123,共8页
系统的量测数据可能受到噪声以及样本类分布不平衡问题的影响,导致基于数据驱动的暂态稳定评估模型性能下降。提出一种针对样本类不平衡的的深度残差网络电力系统暂态稳定评估方法。首先,利用改进过采样技术为滤除噪声的少数类样本构造... 系统的量测数据可能受到噪声以及样本类分布不平衡问题的影响,导致基于数据驱动的暂态稳定评估模型性能下降。提出一种针对样本类不平衡的的深度残差网络电力系统暂态稳定评估方法。首先,利用改进过采样技术为滤除噪声的少数类样本构造所需的新样本,改善样本类不平衡问题,并减少噪声的影响;然后,基于深度残差网络构建电力系统暂态稳定评估模型,解决梯度消失导致的模型性能退化问题,提高模型的鲁棒性和准确性;最后,在新英格兰10机39节点和47机140节点系统上的仿真结果表明,所提方法能减小噪声干扰、降低不平衡数据集所带来的影响和减少计算复杂度。 展开更多
关键词 暂态稳定评估 噪声问题 样本类分布不平衡 改进合成少数过采样技术 深度残差网络
在线阅读 下载PDF
不均衡小样本下的设备状态与寿命预测 被引量:1
6
作者 陈扬 刘勤明 郑伊寒 《计算机集成制造系统》 EI CSCD 北大核心 2024年第1期217-226,共10页
针对面向小样本不均衡设备健康监测数据时AdaBoost处理效果差的问题,提出了基于裁剪过采样新增AdaBoost算法的设备健康状态分析以及寿命预测模型。首先,基于AdaBoost计算出样本权值分布和容量,根据样本最大权值与样本个数生成改进裁剪系... 针对面向小样本不均衡设备健康监测数据时AdaBoost处理效果差的问题,提出了基于裁剪过采样新增AdaBoost算法的设备健康状态分析以及寿命预测模型。首先,基于AdaBoost计算出样本权值分布和容量,根据样本最大权值与样本个数生成改进裁剪系数,选择性地对权值大于裁剪系数的样本进行处理从而提高计算效率。其次,通过类k近邻法则过滤出错分类样本权值,随后引入合成少数类过采样技术提升该种类样本权值个数,有效规避迭代过程中不均衡数据集可能引起的过拟合问题。最后,通过对设备运行状态进行准确分类并拟合出与时间相关的设备寿命曲线预测设备寿命。算例结果表明,所提模型能够有效分析出不均衡数据下的设备健康状况,同时也可以对剩余寿命进行有效预测。 展开更多
关键词 样本 不均衡数据 ADABOOST算法 合成少数过采样技术 剩余寿命预测
在线阅读 下载PDF
基于改进SMOTE不均衡样本处理和IHPO-DBN的变压器故障诊断方法研究 被引量:3
7
作者 周萱 吴伟丽 《电力系统保护与控制》 EI CSCD 北大核心 2024年第11期21-30,共10页
针对由于变压器故障样本不均衡和故障模型陷入局部最优而导致的分类准确率低的问题,提出了基于改进的合成少数类过采样技术和优化深度置信网络(deep belief network, DBN)的变压器故障诊断方法。首先采用聚类融合的K-means算法,通过分... 针对由于变压器故障样本不均衡和故障模型陷入局部最优而导致的分类准确率低的问题,提出了基于改进的合成少数类过采样技术和优化深度置信网络(deep belief network, DBN)的变压器故障诊断方法。首先采用聚类融合的K-means算法,通过分簇和匹配的方式筛选出不稳定的少数类样本用以改进中心点合成少数类过采样技术(center point synthetic minority oversampling technique, CP-SMOTE)算法,并对少数类样本进行扩增,解决了变压器故障数据分布不均衡的问题。其次,通过加入随机逆向学习和自适应惯性权重技术对猎食者优化算法进行改进,并用改进后的算法对DBN的内部参数进行优化调整,提高了模型精度。最后,将不同数据预处理情况下以及不同数据规模下的变压器故障模型进行仿真对比。结果表明,经过数据预处理和模型优化后的变压器故障识别准确率能够提高到98%,有效地解决了故障数据不平衡导致的分类精度低的问题。 展开更多
关键词 变压器故障诊断 不均衡样本 K-MEANS聚类 改进合成少数过采样 改进猎食者优化
在线阅读 下载PDF
小样本下基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断
8
作者 葛平淑 王朝阳 +3 位作者 王阳 张涛 薛红涛 夏晨迪 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第8期1-9,共9页
轮毂电机复杂多变的运行环境可能导致轴承故障而危及电动车辆行驶安全,为解决传统故障诊断方法在小样本条件下识别精度低的问题,提出一种基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断方法。首先,通过合成少数过采样技术(SMOTE)扩展训练数据... 轮毂电机复杂多变的运行环境可能导致轴承故障而危及电动车辆行驶安全,为解决传统故障诊断方法在小样本条件下识别精度低的问题,提出一种基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断方法。首先,通过合成少数过采样技术(SMOTE)扩展训练数据集,生成与真实样本分布相似的故障样本,并使用主成分分析(PCA)优化其时域和频域的特征。然后,通过引入非线性收敛因子和Levy飞行策略改进传统的灰狼优化算法(GWO),使用改进的灰狼优化算法(IGWO)优化随机森林(RF)模型的参数。最后,基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断模型实现故障状态的识别,并在轮毂电机试验台架上进行了实验验证。结果表明,所提出的轮毂电机轴承故障诊断方法在7种转速工况下平均准确率均超过96%,具有高精度和稳定性。与遗传算法(GA)、粒子群优化算法(PSO)、GWO优化RF相比,提出的IGWO-RF模型在3种小样本训练集下的诊断准确率均超过90%,且准确率均明显高于其他3个对比算法,能够有效实现小样本条件下的轮毂电机轴承故障诊断。 展开更多
关键词 轮毂电机 轴承 合成少数过采样技术(SMOTE) 改进灰狼优化算法(IGWO) 随机森林(RF) 故障诊断
在线阅读 下载PDF
非平衡技术在高速网络入侵检测中的应用 被引量:3
9
作者 赵月爱 陈俊杰 穆晓芳 《计算机应用》 CSCD 北大核心 2009年第7期1806-1808,1812,共4页
针对现有的高速网络入侵检测系统丢包率高、检测速度慢以及检测算法对不同类型攻击检测的非平衡性等问题,提出了采用两阶段的负载均衡策略的检测模型。在线检测阶段对网络数据包按协议类型进行分流的检测,离线建模阶段对不同协议类型的... 针对现有的高速网络入侵检测系统丢包率高、检测速度慢以及检测算法对不同类型攻击检测的非平衡性等问题,提出了采用两阶段的负载均衡策略的检测模型。在线检测阶段对网络数据包按协议类型进行分流的检测,离线建模阶段对不同协议类型的数据进行学习建模,供在线部分检测。在讨论非平衡数据处理的各种采样技术基础上,采用改进后的过抽样少数样本合成过采样技术(SMOTE)对网络数据进行预处理,采用AdaBoost、随机森林算法等进行分类。另外对特征选取等方面进行了实验,结果表明SMOTE过抽样可提高各少数类的检测,随机森林算法分类效果好而且建模所用的时间稳定。 展开更多
关键词 高速网络 入侵检测 非平衡数据 少数样本合成过采样技术 集成学习 ADABOOST算法 随机森林算法
在线阅读 下载PDF
构造性覆盖算法的SMOTE过采样方法 被引量:10
10
作者 严远亭 朱原玮 +2 位作者 吴增宝 张以文 张燕平 《计算机科学与探索》 CSCD 北大核心 2020年第6期975-984,共10页
如何提高对少数类样本的识别能力是不平衡数据分类中的一个研究热点。合成少数类过采样技术(SMOTE)是解决此类问题的代表性方法之一。近年来,不少研究者对SMOTE做出了一些改进,较好地提高了该方法的性能。然而,如何有效地选取典型少数... 如何提高对少数类样本的识别能力是不平衡数据分类中的一个研究热点。合成少数类过采样技术(SMOTE)是解决此类问题的代表性方法之一。近年来,不少研究者对SMOTE做出了一些改进,较好地提高了该方法的性能。然而,如何有效地选取典型少数类样本进行过采样仍然是一个值得研究的问题。此外,被孤立的少数样本在提高模型性能方面的潜在能力也没有得到足够的重视。针对上述问题,提出了基于构造性覆盖算法(CCA)的过采样技术CMOTE。CMOTE提供了两种不同策略下选择关键样本的方法:基于覆盖内样本个数的方法与基于覆盖密度的方法。在12个典型的不平衡数据集上验证CMOTE算法的性能。实验结果表明,CMOTE算法在总体上优于对比方法,并且通过强化关键样本对模型性能的影响增强了模型的泛化能力。 展开更多
关键词 不平衡数据 过采样技术 合成少数过采样技术(SMOTE) 构造性覆盖算法(CCA)
在线阅读 下载PDF
融合nmODE的术后肺部并发症预测模型
11
作者 熊立鹏 徐修远 +2 位作者 牛颢 陈楠 章毅 《智能系统学报》 北大核心 2025年第1期198-205,共8页
为了准确预测病人肺部手术后并发症的发生,提出了一种融合神经记忆常微分方程(neural memory ordinary differential equation,nmODE)的并发症预测模型。首先,利用极限梯度提升(extreme gradient boosting,XGBoost)树结构对数据进行编码... 为了准确预测病人肺部手术后并发症的发生,提出了一种融合神经记忆常微分方程(neural memory ordinary differential equation,nmODE)的并发症预测模型。首先,利用极限梯度提升(extreme gradient boosting,XGBoost)树结构对数据进行编码,并提取其特征重要性。然后,使用长短时记忆神经网络对数据的相关特征依赖性进行分析,并提取处理后的特征。最后,利用nmODE的记忆和学习能力,对提取的特征进行深入分析,并得出最终的预测结果。通过实验评估,在肺部术后并发症数据集中,证明了提出模型的效果优于现有模型,同时可以为预测肺部手术后并发症的发生提供更准确的结果。 展开更多
关键词 疾病预测 异构表格数据 神经记忆常微分方程 极限梯度提升 长短时记忆神经网络 合成少数过采样技术 类别不平衡 病人预后
在线阅读 下载PDF
一种基于SVM的非均衡数据集过采样方法 被引量:17
12
作者 张忠林 冯宜邦 赵中恺 《计算机工程与应用》 CSCD 北大核心 2020年第23期220-228,共9页
针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on... 针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on SVM)。SVMOM通过迭代合成样本。在迭代过程中,通过SVM得到分类超平面;根据每个少数类样本到分类超平面的距离赋予样本距离权重;同时考虑少数类样本的类内平衡,根据样本的分布计算样本的密度,赋予样本密度权重;依据样本的距离权重和密度权重计算每个少数类样本的选择权重,根据样本的选择权重选择样本运用SMOTE合成新样本,达到平衡数据集的目的。实验结果表明,提出的算法在一定程度上解决了分类结果偏向多数类的问题,验证了算法的有效性。 展开更多
关键词 不平衡数据 支持向量机(SVM) 过采样 样本权重 合成少数过采样技术(SMOTE)
在线阅读 下载PDF
利用采样安全系数的多类不平衡过采样算法 被引量:4
13
作者 董明刚 刘明 敬超 《计算机科学与探索》 CSCD 北大核心 2020年第10期1776-1786,共11页
传统的过采样算法在处理多类不平衡问题时容易出现过度泛化和类别重叠,从而降低了分类性能。为了提高多类不平衡学习性能,提出了一种利用采样安全系数的多类不平衡过采样(SSCMIO)算法。首先为了防止过度泛化,采用近邻采样安全系数为那... 传统的过采样算法在处理多类不平衡问题时容易出现过度泛化和类别重叠,从而降低了分类性能。为了提高多类不平衡学习性能,提出了一种利用采样安全系数的多类不平衡过采样(SSCMIO)算法。首先为了防止过度泛化,采用近邻采样安全系数为那些会造成过度泛化的邻域分配一个较小的权重。然后考虑到样本点的全局特性,采用反向近邻采样安全系数防止新合成的样本点侵入到其他类别区域,减轻类别之间的重叠问题。最后以C4.5决策树作为基分类器,将SSCMIO算法与7种典型的过采样算法进行了对比实验。在16个公开的真实数据集上,SSCMIO算法在准确率、召回率、F-measure、MG、MAUC这5个指标上均能取得11个以上的最优值,在5个指标上最大提升分别是0.4818、0.3053、0.3420、0.2664、0.1307。实验结果表明SSCMIO算法相比其他7种算法可以取得更好的分类性能。 展开更多
关键词 采样安全系数 过采样 合成少数技术 多类不平衡问题
在线阅读 下载PDF
不平衡样本下基于变异麻雀搜索算法和改进SMOTE的变压器故障诊断方法 被引量:10
14
作者 朱莉 汪小豪 +2 位作者 李豪 姜成龙 曹明海 《高电压技术》 EI CAS CSCD 北大核心 2023年第12期4993-5001,共9页
针对麻雀搜索算法同质化严重和变压器故障样本不平衡导致分类效果不佳的问题,提出了变异麻雀搜索算法优化支持向量机(variation sparrow search algorithm-support vector machine,VSSA-SVM)和改进合成少数过采样技术(improved syntheti... 针对麻雀搜索算法同质化严重和变压器故障样本不平衡导致分类效果不佳的问题,提出了变异麻雀搜索算法优化支持向量机(variation sparrow search algorithm-support vector machine,VSSA-SVM)和改进合成少数过采样技术(improved synthetic minority over-sampling technique,ISMOTE)的变压器故障诊断方法。首先使用Tomek Link对数据集进行去噪,引入中心偏移权重(center offset weight,COW)改进SMOTE算法对不平衡数据集的少数类样本进行合成,得到平衡化处理后的变压器故障数据集。然后,基于变异的思想,构建VSSA-SVM的变压器故障诊断模型。最后,在413例油浸变压器的油中溶解气体分析(dissoived gas anaiysis,DGA)数据上,使用PSO-SVM、SSA-SVM和VSSA-SVM模型进行诊断,诊断结果分别为81.45%、88.71%和96.77%,同时与SMOTE-NND、SVM SMOTE、Borderline-SMOTE、SMOTE以及原始数据集方法相比,ISMOTE分别提升了3.22%、4.03%、6.45%、7.52%、11.29%。结果表明,该文所提方法能准确判别变压器的故障状态,有效解决故障数据不平衡导致分类精度低的问题,具有一定的工程实用价值。 展开更多
关键词 变压器 故障诊断 不平衡样本 改进合成少数过采样 变异麻雀搜索算法
在线阅读 下载PDF
面向不平衡数据的特征子空间增强的异质集成学习
15
作者 陈丽芳 白云 +1 位作者 施永辉 代琪 《计算机工程与科学》 北大核心 2025年第5期940-950,共11页
对于不平衡数据,传统分类器趋向于保证多数类的准确率,而牺牲少数类的准确率,造成算法的整体性能下降。针对这一问题,提出一种面向不平衡数据的特征子空间增强的异质集成学习算法HEL-FSA。首先利用XGBoost算法学习特征的重要性,并选择... 对于不平衡数据,传统分类器趋向于保证多数类的准确率,而牺牲少数类的准确率,造成算法的整体性能下降。针对这一问题,提出一种面向不平衡数据的特征子空间增强的异质集成学习算法HEL-FSA。首先利用XGBoost算法学习特征的重要性,并选择重要的特征,形成数据集的特征子空间;其次使用SMOTE算法在特征子空间中生成新样本,获得更加平衡的训练数据;最后,采用逻辑回归、决策树、多层感知器、支持向量机和XGBoost这5种基模型,并使用if_any算法融合异质基模型。在9个不平衡数据集上的实验结果验证了该算法的可行性,同时,将提出的算法用于宫颈癌风险预测,增强了其对宫颈癌风险的理解和预测能力。 展开更多
关键词 不平衡数据 特征选择 集成学习 合成少数过采样技术
在线阅读 下载PDF
基于混合采样的非平衡数据分类算法 被引量:20
16
作者 吴艺凡 梁吉业 王俊红 《计算机科学与探索》 CSCD 北大核心 2019年第2期342-349,共8页
过采样和欠采样方法是处理非平衡数据集分类的常用方法,但使用单一的采样算法可能造成少数类样本过拟合或者丢失含有重要信息的样本。提出了基于分类超平面的混合采样算法SVM_HS(hybrid sampling algorithm based on support vector mac... 过采样和欠采样方法是处理非平衡数据集分类的常用方法,但使用单一的采样算法可能造成少数类样本过拟合或者丢失含有重要信息的样本。提出了基于分类超平面的混合采样算法SVM_HS(hybrid sampling algorithm based on support vector machine),旨在克服SVM算法在处理非平衡数据时分类超平面容易偏向少数类样本的问题。该算法首先利用SVM算法得到分类超平面。然后迭代进行混合采样,主要包括:(1)删除离分类超平面较远的一些多数类样本;(2)对靠近真实类边界的少数类样本用SMOTE(synthetic minority oversampling technique)过采样,使分类超平面向着真实类边界方向偏移。实验结果表明相比其他相关算法,该算法的F-value值和G-mean值均有较大提高。 展开更多
关键词 非平衡 支持向量机(SVM) 少数样本过采样技术(SMOTE) 分类超平面 混合采样
在线阅读 下载PDF
针对不平衡数据的过采样和随机森林改进算法 被引量:39
17
作者 张家伟 郭林明 杨晓梅 《计算机工程与应用》 CSCD 北大核心 2020年第11期39-45,共7页
针对数据不平衡带来的少数类样本识别率低的问题,提出通过加权策略对过采样和随机森林进行改进的算法,从数据预处理和算法两个方面降低数据不平衡对分类器的影响。数据预处理阶段应用合成少数类过采样技术(Synthetic Minority Oversampl... 针对数据不平衡带来的少数类样本识别率低的问题,提出通过加权策略对过采样和随机森林进行改进的算法,从数据预处理和算法两个方面降低数据不平衡对分类器的影响。数据预处理阶段应用合成少数类过采样技术(Synthetic Minority Oversampling Technique,SMOTE)降低数据不平衡度,每个少数类样本根据其相对于剩余样本的欧氏距离分配权重,使每个样本合成不同数量的新样本。算法改进阶段利用Kappa系数评价随机森林中决策树训练后的分类效果,并赋予每棵树相应的权重,使分类能力更好的树在投票阶段有更大的投票权,提高随机森林算法对不平衡数据的整体分类性能。在KEEL数据集上的实验表明,与未改进算法相比,改进后的算法对少数类样本分类准确率和整体样本分类性能有所提升。 展开更多
关键词 数据不平衡 合成少数过采样技术(SMOTE) Kappa系数 随机森林
在线阅读 下载PDF
考虑过采样器与分类器参数优化的变压器故障诊断策略 被引量:19
18
作者 栗磊 王廷涛 +3 位作者 赫嘉楠 牛健 梁亚波 苗世洪 《电力自动化设备》 EI CSCD 北大核心 2023年第1期209-217,共9页
变压器故障样本的不平衡性使得故障诊断分类准确率低,且容易弱化少数类故障样本的分类效果。对此,采用过采样方法实现故障样本的均衡化,并提出一种考虑过采样器与分类器参数优化的变压器故障诊断策略。首先,搭建变压器故障诊断模型的整... 变压器故障样本的不平衡性使得故障诊断分类准确率低,且容易弱化少数类故障样本的分类效果。对此,采用过采样方法实现故障样本的均衡化,并提出一种考虑过采样器与分类器参数优化的变压器故障诊断策略。首先,搭建变压器故障诊断模型的整体结构,阐述故障诊断的实现过程。在此基础上,提出诊断模型中过采样器、分类器、参数优化器3种主要环节的算法实现:针对过采样器,提出一种基于近邻分布特性的改进合成少数过采样算法实现故障样本的均衡化;针对分类器,采用层次式有向无环图支持向量机算法实现故障样本的多标签分类;针对参数优化器,提出一种双层参数优化方法,上层采用层次搜索算法对过采样倍率寻优,下层采用改进哈里斯鹰算法对支持向量机参数寻优。最后,对所提策略进行算例分析,结果表明,所提策略能够合成质量更高的少数类故障样本,实现故障样本的准确分类。 展开更多
关键词 电力变压器 故障诊断 不平衡样本 过采样 基于近邻分布特性的改进合成少数过采样 层次搜索-改进哈里斯鹰算法
在线阅读 下载PDF
面向非平衡多分类问题的二次合成QSMOTE方法 被引量:3
19
作者 韩明鸣 郭虎升 王文剑 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第1期1-13,共13页
近年来非平衡多分类数据的学习问题在机器学习和数据挖掘领域备受关注,上采样技术成为解决数据不平衡问题的主要方法,然而已有的上采样技术仍有很多的不足,例如新合成的少数类样本仍可能分布在对应少数类样本的原始区域内,不能有效改善... 近年来非平衡多分类数据的学习问题在机器学习和数据挖掘领域备受关注,上采样技术成为解决数据不平衡问题的主要方法,然而已有的上采样技术仍有很多的不足,例如新合成的少数类样本仍可能分布在对应少数类样本的原始区域内,不能有效改善数据分布的不平衡情况.此外,若原始样本中不同类别样本分布存在重叠,则新合成的样本会更容易偏离到其他类样本分布中,从而造成过泛化现象,影响少数类样本的分类精度.为解决上述问题,提出一种二次合成的上采样方法(Quadratic Synthetic Minority Over-sampling Technique,QSMOTE).首先通过少数类样本的支持度选择包含重要信息的样本来进行第一次合成,然后通过分析指定少数类样本质心的邻域内样本分布情况来调整第二次样本合成范围,并最终进行第二次合成.在UCI和MNIST数据集上的实验结果表明,QSMOTE不仅可以改善数据分布的不平衡问题,而且可以尽可能地减少过泛化现象,特别是对少数类样本的分类准确率有大幅提升. 展开更多
关键词 多类非平衡问题 过泛化 重叠 合成少数类上采样技术(SMOTE)
在线阅读 下载PDF
基于数据生成模型的仿真样本点插补方法
20
作者 何玉林 陈佳琪 +2 位作者 徐贺鹏 黄哲学 尹剑飞 《系统仿真学报》 CAS CSCD 北大核心 2023年第9期1948-1964,共17页
为解决插补的仿真样本点与真实样本点概率分布不一致的问题,提出了基于数据生成模型的仿真样本点插补方法。基于高斯混合模型构建真实样本点的数据生成模型,其对应的高斯混合模型构件数通过多模型融合的策略确定;利用在真实样本点上获... 为解决插补的仿真样本点与真实样本点概率分布不一致的问题,提出了基于数据生成模型的仿真样本点插补方法。基于高斯混合模型构建真实样本点的数据生成模型,其对应的高斯混合模型构件数通过多模型融合的策略确定;利用在真实样本点上获得的数据生成模型插补所需的仿真样本点,其中数据生成模型的构件以及构件权重用于控制仿真样本点的生成方式。在20个多模多维混合分布上对新方法的可行性和有效性进行了验证,实验结果表明,与随机样本点插补、合成少类过采样技术及其两种最新的变体等4种方法相比,本文方法能够获得更具概率分布一致性的仿真样本点,证实该方法是一种合理的仿真样本点插补方法。 展开更多
关键词 仿真样本点插补 数据生成模型 高斯混合模型 合成少类过采样技术 概率分布一致
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部