期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv8m的小麦仓储粮虫检测方法 被引量:1
1
作者 吕宗旺 王甜甜 +1 位作者 孙福艳 祝玉华 《中国农机化学报》 北大核心 2025年第3期108-114,共7页
害虫是造成仓储小麦损失的重要因素之一,及时检测害虫并采取有效手段能够减少仓储小麦损失。传统人工检测害虫方法存在人工因素影响较大、速度慢的问题,基于深度学习的仓储粮虫检测方法虽然耗时短,但存在模型较大、速度和准确率二者难... 害虫是造成仓储小麦损失的重要因素之一,及时检测害虫并采取有效手段能够减少仓储小麦损失。传统人工检测害虫方法存在人工因素影响较大、速度慢的问题,基于深度学习的仓储粮虫检测方法虽然耗时短,但存在模型较大、速度和准确率二者难以平衡的问题。故首先选取YOLOv8m算法作为基础进行改进,接着以更轻量化的网络Shufflenetv2代替Darknet—53;其次,在主干网络末端添加Squeeze—and—Excitation Networks注意力机制获取高质量的特征图,有效提高检测精度;最后,采用WIoUv3 Loss为YOLOv8m的回归损失函数,提高检测的精度和速度。试验结果表明:所提出的改进模型平均精度均值达到95.4%,模型参数量为19.46 M,FLOPs为58.74 G。相比其他模型,精确率更高,模型参数量更低,速度更快,能够为仓储害虫检测提供有效技术支撑。 展开更多
关键词 小麦仓储粮虫 深度学习 小目标检测 注意力机制 轻量化模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部