期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于YOLOv5_4layers的PCB小目标缺陷识别方法
被引量:
2
1
作者
杨萍萍
白艳茹
《仪表技术与传感器》
CSCD
北大核心
2024年第3期75-79,共5页
针对PCB表面缺陷分辨率低、小目标性以及多样性等问题,提出了一种基于YOLOv5_4layers的PCB小目标缺陷识别方法。该方法在YOLOv5架构的基础上,通过新增采样层的方式添加小目标检测层,优化特征金字塔模型,提升小目标特征提取性能,实现小...
针对PCB表面缺陷分辨率低、小目标性以及多样性等问题,提出了一种基于YOLOv5_4layers的PCB小目标缺陷识别方法。该方法在YOLOv5架构的基础上,通过新增采样层的方式添加小目标检测层,优化特征金字塔模型,提升小目标特征提取性能,实现小目标缺陷识别。在调整合适的锚框规格后,改进后的模型在输入640像素×640像素图像时,相较原模型识别精确率提升了7.5%。在输入736像素×736像素图像时,识别精确率提升了1.3%,有效地提升了对PCB小目标缺陷的识别能力,对提高PCB制造过程的质量控制和产品可靠性具有实际意义。
展开更多
关键词
PCB
小目标缺陷识别
深度学习
YOLOv5_4layers
特征提取
在线阅读
下载PDF
职称材料
题名
基于YOLOv5_4layers的PCB小目标缺陷识别方法
被引量:
2
1
作者
杨萍萍
白艳茹
机构
北京科技大学高等工程师学院
出处
《仪表技术与传感器》
CSCD
北大核心
2024年第3期75-79,共5页
基金
中央高校基本科研业务费专项资金资助项目(FRFDF-22-12)。
文摘
针对PCB表面缺陷分辨率低、小目标性以及多样性等问题,提出了一种基于YOLOv5_4layers的PCB小目标缺陷识别方法。该方法在YOLOv5架构的基础上,通过新增采样层的方式添加小目标检测层,优化特征金字塔模型,提升小目标特征提取性能,实现小目标缺陷识别。在调整合适的锚框规格后,改进后的模型在输入640像素×640像素图像时,相较原模型识别精确率提升了7.5%。在输入736像素×736像素图像时,识别精确率提升了1.3%,有效地提升了对PCB小目标缺陷的识别能力,对提高PCB制造过程的质量控制和产品可靠性具有实际意义。
关键词
PCB
小目标缺陷识别
深度学习
YOLOv5_4layers
特征提取
Keywords
PCB
small target defect identification
deep learning
YOLOv5_4layers
feature extraction
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于YOLOv5_4layers的PCB小目标缺陷识别方法
杨萍萍
白艳茹
《仪表技术与传感器》
CSCD
北大核心
2024
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部