期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv8s的PCB小目标缺陷检测模型
1
作者 王健 肖迪 +1 位作者 冯李航 沈成 《计算机工程与应用》 北大核心 2025年第15期288-297,共10页
针对目前PCB缺陷检测中面临缺陷的形态复杂、目标小,难以对其进行精确的捕捉,导致识别检出率、准确率低等问题,提出了基于改进YOLOv8s的PCB小目标缺陷检测算法优化。提出增设小目标检测层,同时添加小物体检测头提高在小目标情况下的检... 针对目前PCB缺陷检测中面临缺陷的形态复杂、目标小,难以对其进行精确的捕捉,导致识别检出率、准确率低等问题,提出了基于改进YOLOv8s的PCB小目标缺陷检测算法优化。提出增设小目标检测层,同时添加小物体检测头提高在小目标情况下的检测效果;在骨干网络中引入可选择空洞卷积(S-Conv)与CAFM(context-aware feature modulation)卷积和注意力融合模块,扩大感受野,在提升特征表示能力的同时增强对各尺度特征进行融合;使用可变形卷积和空间信息增强模块设计更加灵活和有效的空间金字塔池化层,提高模型对目标特征的表征能力和检测精度;融合信息聚集-分发机制对颈部结构进行改进。改进损失函数,以VFWD-CIoU代替原损失函数,提升密集小目标检测。改进后的模型算法在四张拼凑的PCB小目标数据集上进行相关对比实验。结果表明,改进后算法模型的平均精度(mAP)为99.1%。相比于Faster R-CNN、YOLOv5、YOLOv7等网络模型,检测精度得到很大的提升,表明该算法可以运用于实际生产环境中的PCB小目标缺陷检测。 展开更多
关键词 PCB 小目标缺陷检测 YOLOv8s 特征融合 注意力机制 损失函数
在线阅读 下载PDF
基于自注意特征融合的钢材表面小目标缺陷检测 被引量:2
2
作者 冯夫健 罗太维 +2 位作者 谭棉 汪小梅 王岳继 《电子测量技术》 北大核心 2024年第19期172-180,共9页
针对钢材表面小目标缺陷占比小,对比度低,导致钢材表面小目标缺陷检测模型提取丰富缺陷特征失效的问题。基于联系上下文信息和增强特征融合之间的关系,对钢材表面小目标缺陷检测问题提出以下解决方案:首先,结合滑动窗口机制Swin Transfo... 针对钢材表面小目标缺陷占比小,对比度低,导致钢材表面小目标缺陷检测模型提取丰富缺陷特征失效的问题。基于联系上下文信息和增强特征融合之间的关系,对钢材表面小目标缺陷检测问题提出以下解决方案:首先,结合滑动窗口机制Swin Transformer,利用分层结构和局部窗口整合不同特征块的特征信息,以在降低卷积操作密集性的基础上增强小目标缺陷特征信息的对比度;其次,采用坐标注意力机制使模型获得更多的位置信息,以增强小目标缺陷特征信息的多样性;最后结合具有丰富梯度流信息的特征融合模块CSP-FCN,提出了基于自注意特征融合的钢材表面小目标缺陷检测模型SFNet,该模型将不同尺度特征融合以产生丰富的语义信息,增强钢材表面小目标缺陷的特征表达能力。实验结果表明,SFNet在NEU-DET和GC10-DET公开数据集上的检测性能优于目前经典的目标检测模型。此外,所提模型在参数量减少为原来1/2的基础上平均精度值分别提升了3%和3.7%。 展开更多
关键词 钢材表面缺陷 小目标缺陷检测 Swin Transformer 位置信息 特征融合
在线阅读 下载PDF
YOLO-POD:基于多维注意力机制的高精度PCB微小缺陷检测算法 被引量:4
3
作者 郭艳 王智文 赵润星 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2515-2528,共14页
随着电子设备的广泛应用,印刷电路板(Printed Circuit Board,PCB)在电子制造行业中具有重要意义.然而,由于制造过程中的不完美和环境因素的干扰,PCB上可能存在微小的缺陷.因此,开发高效准确的缺陷检测算法对于确保产品质量至关重要.针对... 随着电子设备的广泛应用,印刷电路板(Printed Circuit Board,PCB)在电子制造行业中具有重要意义.然而,由于制造过程中的不完美和环境因素的干扰,PCB上可能存在微小的缺陷.因此,开发高效准确的缺陷检测算法对于确保产品质量至关重要.针对PCB微小缺陷检测问题,本文提出了一种基于多维注意力机制的高精度PCB微小缺陷检测算法.为降低网络的模型参数量和计算量,引入部分卷积(Partial Convolution,PConv),将ELAN(Efficient Layer Aggregation Network)模块设计为更加高效的P-ELAN,同时,为增强网络对微小缺陷的特征提取能力,引入多维注意力机制(Multi-Dimensional Attention Mechanism,MDAM)的全维动态卷积(Omni-dimensional Dynamic Convolution,ODConv)并结合部分卷积,设计了POD-CSP(Partial ODconv-Cross Stage Partial)和POD-MP(Partial ODconv-Max Pooling)跨阶段部分网络模块,提出了OD-Neck结构.最后,本文基于(Youo Only Look Once version 7,YOLOv7)提出了对小目标更加高效的YOLO-POD模型,并在训练阶段采用一种新颖的Alpha-SIoU损失函数对网络进行优化.实验结果表明,YOLO-POD的检测精确率和召回率分别达到了98.31%和97.09%,并在多个指标上取得了领先优势,尤其是对于更严格的(mean Average Precision at IoU threshold of 0.75,mAP75)指标,比原始的YOLOv7模型提高28%.验证了YOLO-POD在PCB缺陷检测性能中具有较高的准确性和鲁棒性,满足高精度的检测要求,可为PCB制造行业提供有效的检测解决方案. 展开更多
关键词 印刷电路板 小目标缺陷检测 POD-CSP POD-MP 全维动态卷积 多维注意力机制
在线阅读 下载PDF
基于YOLOv8s的轻量级绝缘子多缺陷检测模型 被引量:2
4
作者 蓝贵文 任新月 +2 位作者 徐梓睿 郭瑞东 钟展 《现代电子技术》 北大核心 2024年第20期72-80,共9页
YOLO系列算法已广泛用于识别电力线路中的各类缺陷目标。由于巡检图像背景复杂、缺陷目标的尺度不一等,直接利用YOLO算法难以有效避免绝缘子闪络、破损等小目标的错检漏检问题。为解决这一问题,在YOLOv8s模型的基础上提出一种轻量化绝... YOLO系列算法已广泛用于识别电力线路中的各类缺陷目标。由于巡检图像背景复杂、缺陷目标的尺度不一等,直接利用YOLO算法难以有效避免绝缘子闪络、破损等小目标的错检漏检问题。为解决这一问题,在YOLOv8s模型的基础上提出一种轻量化绝缘子缺陷检测算法。在骨干网络中引入双层路由注意力机制(BRA),以提升对全局特征的关注度,抑制背景噪声,降低小目标缺陷的错检漏检率。通过加权双向特征金字塔网络(BiFPN)实现跨尺度特征之间的加权融合,获取各类缺陷更全面的特征信息。重构Neck网络来消除低贡献度的网络节点,在增强检测性能的同时减少了模型的参数量,实现了性能提升和参数效率之间的平衡。实验结果显示,改进后的网络模型平均检测精度达到84.9%,而参数量仅为8.4×10^(6),可实现对绝缘子缺陷的快速准确检测。 展开更多
关键词 轻量化网络 YOLOv8s 绝缘子缺陷 小目标缺陷检测 双层路由注意力机制 加权双向特征金字塔网络 特征融合
在线阅读 下载PDF
基于改进YOLOv5的钢材表面缺陷检测
5
作者 刘祉燊 张晓玲 +2 位作者 刘珂宇 刘晓军 刘晓静 《兵工自动化》 北大核心 2024年第12期30-34,共5页
针对钢材表面缺陷检测中小目标缺陷检测效果不理想、特征提取不充分的问题,以YOLOv5算法为基础,提出一种YOLOv5s-ADW算法。将自注意力与卷积混合模块(a mixed model of self-attention and convolution,ACmix)融入主干网络层,增强模型... 针对钢材表面缺陷检测中小目标缺陷检测效果不理想、特征提取不充分的问题,以YOLOv5算法为基础,提出一种YOLOv5s-ADW算法。将自注意力与卷积混合模块(a mixed model of self-attention and convolution,ACmix)融入主干网络层,增强模型的特征敏感度;在特征融合层中加入可变形大内核注意力机制(deformable large kernel attention,D-LKA),增强模型对图像中不规则缺陷的捕捉能力;将原损失函数替换为Wise-IoU损失函数,降低数据集中低质量示例对模型检测效果的影响并提升小目标缺陷检测能力,在NEU-DET上进行实验验证。实验验证结果表明:YOLOv5s-ADW算法的平均精度均值(mean average precision,mAP)达到88.3%,相较原始模型提升了14.4%;小目标缺陷和漏检率高的缺陷平均精度(average precision,AP)也有较大提升,相比其他主流算法,能够更好解决上述问题。 展开更多
关键词 YOLOv5 钢材表面缺陷检测 小目标缺陷检测 特征提取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部