期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于小波-神经网络的风速及风力发电量预测 被引量:60
1
作者 杨琦 张建华 +1 位作者 王向峰 李卫国 《电网技术》 EI CSCD 北大核心 2009年第17期44-48,共5页
风能作为可再生清洁能源已得到世界各国的广泛应用。由于风速的不确定性,给保障风力可靠性发电带来了一定的困难。提出了一种较为准确的小波–神经网络法预测风速。该方法利用小波函数将原始波形进行不同尺度的分解,将分解得到的周期分... 风能作为可再生清洁能源已得到世界各国的广泛应用。由于风速的不确定性,给保障风力可靠性发电带来了一定的困难。提出了一种较为准确的小波–神经网络法预测风速。该方法利用小波函数将原始波形进行不同尺度的分解,将分解得到的周期分量用时间序列进行预测,其余部分采用神经网络进行预测,最后将信号序列进行重构得到完整的风速预测结果。在神经–网络学习过程中加入了微分进化算法,提高了其收敛速度,解决了局部最小化问题。通过实例分析证明了该算法能较为准确地预测风速。 展开更多
关键词 风力发电 风速预测 小波-神经网络
在线阅读 下载PDF
基于小波-神经网络的瓷坯泥内部应力分布的软测量 被引量:7
2
作者 王莹 谈国强 周强 《硅酸盐通报》 CAS CSCD 北大核心 2009年第3期500-505,共6页
针对真空练泥机中可塑性坯泥的颗粒定向问题,研究真空练泥机机头内壁压力对坯泥内部应力的影响,同时使用小波-神经网络获得真空练泥机机头内壁压力和泥料内部应力之间的对应关系,并利用此关系实现坯泥内部应力分布的在线软测量。研究表... 针对真空练泥机中可塑性坯泥的颗粒定向问题,研究真空练泥机机头内壁压力对坯泥内部应力的影响,同时使用小波-神经网络获得真空练泥机机头内壁压力和泥料内部应力之间的对应关系,并利用此关系实现坯泥内部应力分布的在线软测量。研究表明:采用小波-神经网络可以精确地得到真空练泥机机头内壁压力和坯泥内部应力的函数关系,并在此基础上完成坯泥内部应力分布的在线软测量。 展开更多
关键词 真空练泥机 可塑性坯泥 应力分布 小波-神经网络 软测量
在线阅读 下载PDF
基于空间相关性和小波-神经网络的短期风电功率预测模型 被引量:4
3
作者 徐梅梅 任祖怡 +4 位作者 陈建国 倪建军 张俊芳 宁楠 赵继伟 《南京理工大学学报》 EI CAS CSCD 北大核心 2016年第3期360-365,共6页
为准确预测风电功率,该文提出1种预测模型。利用风速空间相关性把握风速时间序列的变化规律。将小波基函数植入神经网络的神经元节点中作为传递函数,对风电功率进行预测。对2相邻风电场短期风电功率预测算例进行仿真与对比分析。结果表... 为准确预测风电功率,该文提出1种预测模型。利用风速空间相关性把握风速时间序列的变化规律。将小波基函数植入神经网络的神经元节点中作为传递函数,对风电功率进行预测。对2相邻风电场短期风电功率预测算例进行仿真与对比分析。结果表明基于空间相关性和小波-神经网络(SC-WNN)的预测模型与逆传播神经网络(BPNN)和小波-神经网络(WNN)预测模型相比,平均百分比误差最大降低了0.164 3。 展开更多
关键词 空间相关性 小波-神经网络 风电功率预测 小波基函数 逆传播神经网络 风能利用
在线阅读 下载PDF
小波-神经网络在辐射源识别中的应用研究 被引量:15
4
作者 牛海 马颖 《系统工程与电子技术》 EI CSCD 北大核心 2002年第5期55-57,共3页
针对目标所采用的辐射源识别方法对复杂体制雷达信号识别效率低或无法识别的现象 ,提出了一种新的辐射源识别方法。首先 ,利用小波包可对信号进行多维多分辨率分析的特点 ,对辐射源信号进行信号特征的提取 ,然后将各辐射源的信号特征作... 针对目标所采用的辐射源识别方法对复杂体制雷达信号识别效率低或无法识别的现象 ,提出了一种新的辐射源识别方法。首先 ,利用小波包可对信号进行多维多分辨率分析的特点 ,对辐射源信号进行信号特征的提取 ,然后将各辐射源的信号特征作为ART2神经网络的训练样本 ,对其进行辐射源类型的识别。通过计算机仿真 ,对上述方法进行了验证。试验结果表明 ,这种基于小波 神经网络的辐射源识别方法在识别复杂体制雷达信号的应用中不仅克服了目前识别方法识别效率低的弊端 。 展开更多
关键词 小波-神经网络 辐射源识别 电子侦察
在线阅读 下载PDF
基于优化子波-神经网络图像识别的工件形状监控 被引量:1
5
作者 谢平 刘彬 董全林 《仪器仪表学报》 EI CAS CSCD 北大核心 2003年第2期211-214,共4页
介绍了一种用普通 CCD摄像机和激光对旋转工件的形态进行图像采集和状态监控的系统 ,提出了用于图像处理与识别的子波 -神经网络结构 ,并设计了相应的优化学习算法 ,可以简化网络并加速收敛。该系统可用于实现自动化精密加工过程中的工... 介绍了一种用普通 CCD摄像机和激光对旋转工件的形态进行图像采集和状态监控的系统 ,提出了用于图像处理与识别的子波 -神经网络结构 ,并设计了相应的优化学习算法 ,可以简化网络并加速收敛。该系统可用于实现自动化精密加工过程中的工件形状监控和刀具诊断 。 展开更多
关键词 工件形状监控 图像处理 小波-神经网络 优化算法 CCD摄像机 激光 图像识别
在线阅读 下载PDF
基于WNN与FCM的电动汽车动态充电负荷预测方法 被引量:10
6
作者 张天培 王成亮 +3 位作者 崔恒志 郑海雁 杨庆胜 卞正达 《电力工程技术》 北大核心 2021年第1期167-174,共8页
随着电动汽车动态无线充电(EV-DWC)技术的发展,针对目前EV-DWC负荷建模理论工作不全面的现状,以交通流量作为影响充电负荷的主要因素,以天气、典型日期、季节等因素为次要影响因素,根据路况建立负荷模型,通过电动汽车型号和状态的聚类... 随着电动汽车动态无线充电(EV-DWC)技术的发展,针对目前EV-DWC负荷建模理论工作不全面的现状,以交通流量作为影响充电负荷的主要因素,以天气、典型日期、季节等因素为次要影响因素,根据路况建立负荷模型,通过电动汽车型号和状态的聚类不同对汽车分配不同的功率,完成动态充电负荷的建立。采用小波神经网络(WNN)对时序信息进行处理预测,再同误差反向传播神经网络(BPNN)相结合预测充电道路上的车流,短期车流预测精度为85%,用模糊C聚类(FCM)算法对电动汽车的充电类型以及该类型所对应的充电功率进行划分,将进入充电道路的电动汽车分为7种类型。根据各种充电类型分配相应的充电功率,完成日负荷建模。 展开更多
关键词 电动汽车动态充电(EV-DWC) 小波-反向传播混合神经网络(W-BPNN) 模糊C聚类(FCM) 电动汽车充电方式 负荷模型
在线阅读 下载PDF
Wavelet neural network based fault diagnosis in nonlinear analog circuits 被引量:16
7
作者 Yin Shirong Chen Guangju Xie Yongle 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期521-526,共6页
The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the ... The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility. 展开更多
关键词 fault diagnosis nonlinear analog circuits wavelet analysis neural networks.
在线阅读 下载PDF
Wavelet neural network aerodynamic modeling from flight data based on pso algorithm with information sharing and velocity disturbance 被引量:4
8
作者 甘旭升 端木京顺 +1 位作者 孟月波 丛伟 《Journal of Central South University》 SCIE EI CAS 2013年第6期1592-1601,共10页
For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with i... For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with information sharing strategy and velocity disturbance operator,is proposed.In improved PSO algorithm,an information sharing strategy is used to avoid the premature convergence as much as possible;the velocity disturbance operator is adopted to jump out of this position once falling into the premature convergence.Simulations on lateral and longitudinal aerodynamic modeling for ATTAS (advanced technologies testing aircraft system) indicate that the proposed method can achieve the accuracy improvement of an order of magnitude compared with SPSO-WNN,and can converge to a satisfactory precision by only 60 120 iterations in contrast to SPSO-WNN with 6 times precocities in 200 times repetitive experiments using Morlet and Mexican hat wavelet functions.Furthermore,it is proved that the proposed method is feasible and effective for aerodynamic modeling from flight data. 展开更多
关键词 aerodynamic modeling flight data WAVELET neural network particle swarm optimization
在线阅读 下载PDF
Adaptive WNN aerodynamic modeling based on subset KPCA feature extraction 被引量:4
9
作者 孟月波 邹建华 +1 位作者 甘旭升 刘光辉 《Journal of Central South University》 SCIE EI CAS 2013年第4期931-941,共11页
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr... In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles. 展开更多
关键词 WAVELET neural network fuzzy C-means clustering kernel principal components analysis feature extraction aerodynamic modeling
在线阅读 下载PDF
Forecasting available parking space with largest Lyapunov exponents method 被引量:3
10
作者 季彦婕 汤斗南 +2 位作者 郭卫红 BLYTHE T.Phil 王炜 《Journal of Central South University》 SCIE EI CAS 2014年第4期1624-1632,共9页
The techniques to forecast available parking space(APS) are indispensable components for parking guidance systems(PGS). According to the data collected in Newcastle upon Tyne, England, the changing characteristics of ... The techniques to forecast available parking space(APS) are indispensable components for parking guidance systems(PGS). According to the data collected in Newcastle upon Tyne, England, the changing characteristics of APS were studied. Thereafter, aiming to build up a multi-step APS forecasting model that provides richer information than a conventional one-step model, the largest Lyapunov exponents(largest LEs) method was introduced into PGS. By experimental tests conducted using the same dataset, its prediction performance was compared with traditional wavelet neural network(WNN) method in both one-step and multi-step processes. Based on the results, a new multi-step forecasting model called WNN-LE method was proposed, where WNN, which enjoys a more accurate performance along with a better learning ability in short-term forecasting, was applied in the early forecast steps while the Lyapunov exponent prediction method in the latter steps precisely reflect the chaotic feature in latter forecast period. The MSE of APS forecasting for one hour time period can be reduced from 83.1 to 27.1(in a parking building with 492 berths) by using largest LEs method instead of WNN and further reduced to 19.0 by conducted the new method. 展开更多
关键词 available parking space Lyapunov exponents wavelet neural network multi-step forecasting method
在线阅读 下载PDF
Improved wavelet neural network combined with particle swarm optimization algorithm and its application 被引量:1
11
作者 李翔 杨尚东 +1 位作者 乞建勋 杨淑霞 《Journal of Central South University of Technology》 2006年第3期256-259,共4页
An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learnin... An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function. 展开更多
关键词 artificial neural network particle swarm optimization algorithm short-term load forecasting WAVELET curse of dimensionality
在线阅读 下载PDF
A novel internet traffic identification approach using wavelet packet decomposition and neural network 被引量:7
12
作者 谭骏 陈兴蜀 +1 位作者 杜敏 朱锴 《Journal of Central South University》 SCIE EI CAS 2012年第8期2218-2230,共13页
Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network... Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network. 展开更多
关键词 neural network particle swarm optimization statistical characteristic traffic identification wavelet packet decomposition
在线阅读 下载PDF
铁路风速单步高精度混合预测性能对比研究
13
作者 刘辉 田红旗 +1 位作者 李燕飞 张雷 《铁道学报》 EI CAS CSCD 北大核心 2016年第8期41-49,共9页
为实现风速高精度预测以保障强风下铁路沿线列车的运营安全,利用小波分析理论和神经网络理论所形成的两种不同混合预测算法对我国典型的强风线路青藏铁路沿线的实测大风序列开展超前单步预测研究。小波-神经网络法采用小波分解理论对原... 为实现风速高精度预测以保障强风下铁路沿线列车的运营安全,利用小波分析理论和神经网络理论所形成的两种不同混合预测算法对我国典型的强风线路青藏铁路沿线的实测大风序列开展超前单步预测研究。小波-神经网络法采用小波分解理论对原始非平稳风速进行分解,对各分解层建立神经网络模型以实现最终的加权预测输出。小波型神经网络法将小波母函数作为神经网络隐含层节点的传递函数训练网络,用训练好的神经网络模型对原始风速进行预测计算。通过对青藏铁路3个测风站实测风速的预测算例表明:两种混合算法的预测指标都优于单种神经网络,小波-神经网络法比小波型神经网络法拥有更加出色的预测性能。 展开更多
关键词 铁路安全 风速预测 小波-神经网络 小波神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部