期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLO v11的番茄表面缺陷检测方法
1
作者 朱婷婷 滕广 +2 位作者 张亚军 倪超 何惠彬 《农业机械学报》 北大核心 2025年第6期546-553,共8页
传统的番茄缺陷检测主要依赖于人工分拣,存在效率低、漏检率高等问题。为此,提出了一种改进的YOLO v11番茄缺陷检测方法TDD-YOLO(Tomato defect detection YOLO),实现对番茄表面白斑、增生、凹陷、裂口、变质5种缺陷的自动检测。首先,... 传统的番茄缺陷检测主要依赖于人工分拣,存在效率低、漏检率高等问题。为此,提出了一种改进的YOLO v11番茄缺陷检测方法TDD-YOLO(Tomato defect detection YOLO),实现对番茄表面白斑、增生、凹陷、裂口、变质5种缺陷的自动检测。首先,融合小波深度可分离卷积模块构建新的HE-Head层,在保持模型轻量化的同时提升模型对小目标的检测能力(如白斑);其次,使用WC3k2模块替换原有C3k2模块,扩大模型在特征提取阶段的感受野,同时使用动态上采样方法取代原有的上采样,实现对模型推理效率的提升和轻量化;最后,使用自适应阈值焦点损失函数加强对样本的关注度,提高识别精度。设计实验验证所提方法性能,实验结果表明本文所提的TDD-YOLO模型番茄表面缺陷整体识别精度为89.0%、召回率为84.9%、F1分数为86.9%、平均精度均值为88.0%,识别效果明显优于现有的YOLO系列模型以及Faster R-CNN和EfficientDet模型。此外,TDD-YOLO模型检测速度为142.89 f/s,满足实时检测速度要求,为番茄检测规范化和工业化提供重要技术支撑。 展开更多
关键词 番茄 缺陷检测 YOLO v11 小波深度可分离卷积 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部