期刊文献+
共找到623篇文章
< 1 2 32 >
每页显示 20 50 100
基于马氏距离的密度加权最小二乘孪生支持向量机
1
作者 吕莉 贺智鹏 +3 位作者 张法滢 张莹莹 康平 李院民 《江西师范大学学报(自然科学版)》 北大核心 2025年第1期37-48,共12页
最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支... 最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支持向量机.该算法利用马氏距离替换欧氏距离构造密度加权策略,充分考虑点与分布的关系,给予噪声数据较低的权重,降低算法对噪声的敏感性;同时结合马氏距离核函数计算样本内协方差矩阵,消除样本特征值之间方差的差异,更准确地体现样本间的相关性,从而优化决策超平面.实验采用人工数据集和UCI数据集,实验结果表明:该算法比同类型分类算法具有更高的分类精确度和泛化能力,能够有效区分在样本中的噪声数据并赋予合适的权重值,提升分类器的鲁棒性. 展开更多
关键词 支持向量 马氏距离 函数 密度加权 最小二乘损失函数
在线阅读 下载PDF
复高斯小波核函数的支持向量机研究 被引量:7
2
作者 陈中杰 蔡勇 蒋刚 《计算机应用研究》 CSCD 北大核心 2012年第9期3263-3265,共3页
针对基于常用核函数的支持向量机在非线性系统参数辨识及预测方面的不足之处,构建了一种新的核函数——复高斯小波函数核函数。首先证明了新构建的核函数的正确性,即满足Mercy条件,表明其可以作为核函数;然后构建基于该核函数的支持向量... 针对基于常用核函数的支持向量机在非线性系统参数辨识及预测方面的不足之处,构建了一种新的核函数——复高斯小波函数核函数。首先证明了新构建的核函数的正确性,即满足Mercy条件,表明其可以作为核函数;然后构建基于该核函数的支持向量机,并将该支持向量机用于非线性系统的辨识和未知部分的预测。通过与常用核函数构建的支持向量机的仿真结果进行对比,验证了该方法的正确性和有效性。 展开更多
关键词 复高斯小波函数 Mercy条件 支持向量 非线性系统辨识及预测
在线阅读 下载PDF
基于数据分解与超参数优化的若干变体支持向量机月降水量预测
3
作者 周正道 黄斌 《节水灌溉》 北大核心 2025年第9期36-43,共8页
为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法... 为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法和麋鹿优化(EHO)算法,提出WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM月降水量时间序列预测模型,通过云南省大理州2个雨量站月降水量预测实例对18种模型进行验证。首先利用WPT1/WPT2/WPT3对实例月降水量时序数据进行分解处理,划分训练集和验证集;然后基于训练集构建HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数优化适应度函数,利用EHO优化适应度函数获得最优超参数;最后利用最优超参数建立WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM模型对实例各分量进行预测和重构。结果表明:①18种模型对月降水量均具有较好拟合、预测精度。其中WPT3-EHO-HRVM/HLSSVM/HSVM模型预测的平均绝对误差(MAE)、决定系数(R2)1.70~0.81 mm、0.9996~0.9999,优于其他对比模型,具有最小的预测误差;WPT2-EHO-HRVM/HLSSVM/HSVM模型预测效果较好,精度较高;WPT1-EHO-HRVM/HLSSVM/HSVM模型预测误差相对较大。②在相同分解层数和EHO优化情形下,通过线性组合不同核函数的EHOHRVM/HLSSVM/HSVM模型能更好地适应不同类型的数据分布,显著提升月降水量预测精度。③WPT3分解效果优于WPT2,远优于WPT1,月降水量预测精度随着WPT分解层数的增加而提高。④通过EHO优化HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数,能有效提升模型预测精度和预测效率。 展开更多
关键词 月降水量预测 小波包分解 麋鹿优化算法 混合函数 支持向量及其变体 超参数优化
在线阅读 下载PDF
基于小波核函数和支持向量机的大坝变形预测 被引量:9
4
作者 杨贝贝 《人民长江》 北大核心 2016年第17期98-101,共4页
支持向量机中核函数的选择对大坝监控模型预测精度具有较大影响。基于支持向量机结构风险最小化以及小波框架理论,提出用小波核函数代替高斯径向基核函数(RBF),并采用粒子群算法对支持向量机的参数进行寻优,得到一种新的大坝变形预测模... 支持向量机中核函数的选择对大坝监控模型预测精度具有较大影响。基于支持向量机结构风险最小化以及小波框架理论,提出用小波核函数代替高斯径向基核函数(RBF),并采用粒子群算法对支持向量机的参数进行寻优,得到一种新的大坝变形预测模型。针对某实际工程,基于监测数据,将该模型与采用RBF核函数的支持向量机模型以及统计回归模型做对比,结果显示采用小波核函数的支持向量机模型模拟精度更高,泛化能力更强。 展开更多
关键词 小波分析 支持向量 函数 粒子群算法 预测模型
在线阅读 下载PDF
金融高频数据跳跃波动研究——基于大数据核函数支持向量机的方法 被引量:2
5
作者 柳向东 李文健 《统计与信息论坛》 CSSCI 北大核心 2018年第9期23-30,共8页
高频数据价格波动率具有明显的长记忆性特征和"尖峰厚尾"现象,运用沪深300指数5分钟高频数据,通过已实现波动率和已实现双幂次变差对资产价格的连续性波动和跳跃波动进行建模,得到进行波动率短期预测的HAR-RV模型、HAR-lnRV... 高频数据价格波动率具有明显的长记忆性特征和"尖峰厚尾"现象,运用沪深300指数5分钟高频数据,通过已实现波动率和已实现双幂次变差对资产价格的连续性波动和跳跃波动进行建模,得到进行波动率短期预测的HAR-RV模型、HAR-lnRV模型及HAR-JV-CV模型。将预测效果较好的模型与不同核函数下的支持向量机相结合,结果表明:不同核函数之间存在较大的相似性;将跳跃波动预测模型与支持向量机相结合能够提高模型的短期预测精度。波动率的预测对于政府监管部门、投资者和资本市场来说均具有重要意义。 展开更多
关键词 已实现动率 HAR-lnRV模型 支持向量 短期预测 函数
在线阅读 下载PDF
基于加权局部密度的双超球支持向量机算法
6
作者 王梦珍 张德生 张晓 《计算机工程》 北大核心 2025年第5期188-195,共8页
使用一对超球面描述样本分布的双超球支持向量机(THSVM)算法没有考虑样本数据的密度信息,容易受噪声干扰,对所有特征赋予相同权重,忽略了不同特征对分类结果的影响。针对上述问题,提出了基于加权局部密度的双超球支持向量机(WLDTHSVM)... 使用一对超球面描述样本分布的双超球支持向量机(THSVM)算法没有考虑样本数据的密度信息,容易受噪声干扰,对所有特征赋予相同权重,忽略了不同特征对分类结果的影响。针对上述问题,提出了基于加权局部密度的双超球支持向量机(WLDTHSVM)算法。首先,利用信息增益计算每个特征的权重,并将特征权重应用到欧氏距离以及核函数的计算中,降低了不相关或弱相关的特征对样本相似性的影响;其次,利用特征加权的欧氏距离,构造一种新的加权局部密度函数,不仅考虑了样本点近邻的类别信息,而且考虑不同特征对样本间距离的影响,将归一化加权局部密度与误差项结合来增强模型的抗噪声干扰能力;最后,用特征加权的决策函数判定测试样本点的所属类别。在人工数据集和UCI数据集上对WLDTHSVM算法的可行性与有效性进行验证,实验结果表明,WLDTHSVM算法与支持向量机(SVM)、孪生支持向量机(TWSVM)、THSVM等对比算法相比,在11个UCI数据集上平均准确率最高可提升2.76百分点,在含噪数据集上具有较好的分类表现。 展开更多
关键词 支持向量 局部密度 特征权重 信息增益 函数
在线阅读 下载PDF
基于核函数支持向量回归机的耕地面积预测 被引量:42
7
作者 王霞 王占岐 +1 位作者 金贵 杨俊 《农业工程学报》 EI CAS CSCD 北大核心 2014年第4期204-211,共8页
科学预测耕地保有量是耕地保护的基础,对缓解用地矛盾、保证粮食安全具有重要指导意义。为探讨不同核函数支持向量回归机(support vector regression,SVR)对耕地面积预测的影响,该文以惠州市为例,分别采用多元回归、BP神经网络及3种不... 科学预测耕地保有量是耕地保护的基础,对缓解用地矛盾、保证粮食安全具有重要指导意义。为探讨不同核函数支持向量回归机(support vector regression,SVR)对耕地面积预测的影响,该文以惠州市为例,分别采用多元回归、BP神经网络及3种不同核函数SVR建立耕地面积预测模型并进行对比试验。预测结果精度分析显示,RBF核函数SVR预测结果平均相对误差为0.54%,均方根误差为0.007,精度最高;Sigmoid核函数SVR预测结果对应误差分别为1.12%及0.012,精度次之;多项式核函数SVR预测结果对应误差为分别为2.71%及0.032,高于BP神经网络模型,但低于多元回归模型。研究表明,在现有3种常用核函数SVR耕地面积预测模型中,基于RBF核函数SVR模型预测能力最强,其次是sigmoid核函数;而多项式核函数则效果较差。 展开更多
关键词 土地利用 支持向量 预测 耕地 函数 惠州市
在线阅读 下载PDF
组合核函数支持向量机高光谱图像融合分类 被引量:23
8
作者 高恒振 万建伟 +2 位作者 粘永健 王力宝 徐湛 《光学精密工程》 EI CAS CSCD 北大核心 2011年第4期878-883,共6页
针对高光谱图像分类,提出了一种利用组合核函数融合目标光谱域和空域信息的支持向量机学习算法。该算法首先用主成分分析方法对高光谱图像进行特征提取和降维,用虚拟维数估计策略预估原始图像的本征维数,并且在预估的基础上确定要保留... 针对高光谱图像分类,提出了一种利用组合核函数融合目标光谱域和空域信息的支持向量机学习算法。该算法首先用主成分分析方法对高光谱图像进行特征提取和降维,用虚拟维数估计策略预估原始图像的本征维数,并且在预估的基础上确定要保留的主成份分量数目;然后用数学形态学操作在选取的主分量图像上提取目标的形态信息,得到扩展的空域形态矢量。最后,通过不同的组合策略,构造组合核函数,从而在分类器中引入空域信息,和原有的谱域信息一起,利用支持向量机进行分类。高光谱数据实验表明,在训练时间没有显著差别的情况下,总体分类精度和Kappa系数均提高了2%左右。实验表明,本文提出的方法较单独使用谱域或空域信息进行分类具有一定的优越性。 展开更多
关键词 高光谱图像 图像融合 数学形态学 组合函数 支持向量
在线阅读 下载PDF
系统辨识中支持向量机核函数及其参数的研究 被引量:80
9
作者 荣海娜 张葛祥 金炜东 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第11期3204-3208,3226,共6页
具有不同核函数和参数的支持向量机(SVM)的性能存在很大差异,核函数及其参数的选择是SVM应用和理论研究中的一个重要问题。在简要介绍非线性系统辨识的支持向量机方法后,重点对常用的核函数及其参数的选择进行了研究,并采用具有不同核... 具有不同核函数和参数的支持向量机(SVM)的性能存在很大差异,核函数及其参数的选择是SVM应用和理论研究中的一个重要问题。在简要介绍非线性系统辨识的支持向量机方法后,重点对常用的核函数及其参数的选择进行了研究,并采用具有不同核函数的SVM进行非线性系统辨识。大量实验结果表明,采用SVM方法进行系统辨识时,径向基核函数(RBKF)比其它核函数的辨识效果好,且RBKF的参数选择较容易,当参数在有效范围内改变时,空间复杂度变化小,易于实现。因此,RBKF是系统辨识SVM的较好选择。 展开更多
关键词 支持向量 函数 系统辨识 非线性系统
在线阅读 下载PDF
多核支持向量机预测电网系统可靠性 被引量:1
10
作者 何井龙 张福泉 +1 位作者 阳晟 周智成 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第4期462-467,共6页
为了改善电网系统可靠性预测性能,构建多个目标函数并采用多核支持向量机算法对配电网进行可靠性预测;从电网样本特征中筛选供电可用率、户均停电时间、户均停电次数3个关键指标,建立可靠性评价目标函数,且采用多核支持向量机训练可靠... 为了改善电网系统可靠性预测性能,构建多个目标函数并采用多核支持向量机算法对配电网进行可靠性预测;从电网样本特征中筛选供电可用率、户均停电时间、户均停电次数3个关键指标,建立可靠性评价目标函数,且采用多核支持向量机训练可靠性指标特征;将高斯核函数、多项式核函数和Sigmoid核函数进行多核组合,采用多核支持向量机求解不同目标函数,获得电网系统可靠性预测结果,进而确定更佳的可靠性预测核函数组合。结果表明,合理选择核函数组合和电网可靠性指标,多核支持向量机对供电可用率、户均停电时间和户均停电次数指标预测准确率较高,且稳定性好,高斯核函数-Sigmoid核函数组合的可靠性预测准确性最佳,高斯核函数-多项式核函数-Sigmoid核函数组合的预测稳定性最好。 展开更多
关键词 电网系统可靠性 函数 支持向量 目标函数
在线阅读 下载PDF
基于核函数支持向量机的雷达辐射源识别 被引量:18
11
作者 关欣 郭强 +2 位作者 张政超 赵静 翟鸿君 《弹箭与制导学报》 CSCD 北大核心 2011年第4期188-191,共4页
文中针对雷达辐射源信号环境复杂导致的正确识别率较低的问题,提出了基于支持向量机理论的雷达辐射源识别方法,并构建了基于多种核函数支持向量机的雷达辐射源分类器。通过在不同噪声环境下进行仿真实验,证明了支持向量机理论在雷达辐... 文中针对雷达辐射源信号环境复杂导致的正确识别率较低的问题,提出了基于支持向量机理论的雷达辐射源识别方法,并构建了基于多种核函数支持向量机的雷达辐射源分类器。通过在不同噪声环境下进行仿真实验,证明了支持向量机理论在雷达辐射源识别中的有效性,并比较了多种核函数支持向量机的识别效果。 展开更多
关键词 雷达辐射源识别 函数 支持向量
在线阅读 下载PDF
基于网格搜索的支持向量机核函数参数的确定 被引量:128
12
作者 王兴玲 李占斌 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第5期859-862,共4页
为提高支持向量机的分类准确率,研究了支持向量机核函数的参数确定问题,得到了1种确定支持向量机核函数的参数的有效途径。利用网格搜索法可使各组核函数参数相互解耦,从而便于并行计算,提高了运行效率。将此方法用于测井岩性分类器的... 为提高支持向量机的分类准确率,研究了支持向量机核函数的参数确定问题,得到了1种确定支持向量机核函数的参数的有效途径。利用网格搜索法可使各组核函数参数相互解耦,从而便于并行计算,提高了运行效率。将此方法用于测井岩性分类器的训练得到了较理想的仿真结果。 展开更多
关键词 支持向量 函数 网格搜索
在线阅读 下载PDF
基于不同核函数构建的退行性颈椎病支持向量机高危人群筛查模型的比较 被引量:17
13
作者 吕艳伟 李文桓 +4 位作者 田伟 陈大方 段芳芳 王立芳 刘志科 《中国卫生统计》 CSCD 北大核心 2018年第3期368-371,共4页
目的评价基于不同核函数构建的退行性颈椎病支持向量机高危人群筛查模型的优劣,为退行性颈椎疾病高危人群的筛查提供工具支持。方法利用北京地区社区人群骨科退行性疾病研究数据库,采用线性核、多项式核、Sigmoid核和高斯核函数构建支... 目的评价基于不同核函数构建的退行性颈椎病支持向量机高危人群筛查模型的优劣,为退行性颈椎疾病高危人群的筛查提供工具支持。方法利用北京地区社区人群骨科退行性疾病研究数据库,采用线性核、多项式核、Sigmoid核和高斯核函数构建支持向量机模型,并根据十折交叉验证率最大的标准确定核函数参数。根据约登指数最大化的标准选择切点值,计算模型相应的灵敏度、特异度和预测准确率。采用ROC曲线评价不同核函数构建的模型的性能。结果在四种核函数计算的支持向量机模型中,多项式核函数计算ROC曲线下面积最大,为0.6928(95%CI:0.6502~0.7355),但不同核函数的ROC曲线下面积的95%CI存在重叠,尚未发现不同核函数建立本模型的优势。结论可利用该模型进行高危人群筛查,但未发现不同核函数构建的支持向量机模型性能的差别。 展开更多
关键词 颈椎病 支持向量模型 函数
在线阅读 下载PDF
基于混合核函数的支持向量机 被引量:44
14
作者 邬啸 魏延 吴瑕 《重庆理工大学学报(自然科学)》 CAS 2011年第10期66-70,共5页
支持向量机采用核函数来实现从原输入空间到一个高维空间的非线性映射,而由于普通核函数各有其利弊,为了得到学习能力和泛化性能都很强的核函数,研究了2种支持向量机核函数:全局核函数(线性核函数)和局部核函数(RBF核函数),提出了组合... 支持向量机采用核函数来实现从原输入空间到一个高维空间的非线性映射,而由于普通核函数各有其利弊,为了得到学习能力和泛化性能都很强的核函数,研究了2种支持向量机核函数:全局核函数(线性核函数)和局部核函数(RBF核函数),提出了组合核函数的支持向量机。与普通核函数构造的支持向量机进行了比较实验。结果表明,组合核函数的支持向量机性能明显优于由普通核函数构造的支持向量机。 展开更多
关键词 支持向量 混合函数 局部函数 全局函数
在线阅读 下载PDF
基于小波去噪核主元分析和邻近支持向量机的性能监控和故障诊断 被引量:9
15
作者 张曦 阎威武 +1 位作者 赵旭 邵惠鹤 《上海交通大学学报》 EI CAS CSCD 北大核心 2008年第2期181-185,共5页
针对化工过程数据中包含噪声和强非线性的特点,提出了基于小波去噪核主元分析(De-noised Kernel Principal Component Analysis,DKPCA)和邻近支持向量机(Proximal Support Vector Machine,PSVM)的性能监控和故障诊断新方法.将样本数据... 针对化工过程数据中包含噪声和强非线性的特点,提出了基于小波去噪核主元分析(De-noised Kernel Principal Component Analysis,DKPCA)和邻近支持向量机(Proximal Support Vector Machine,PSVM)的性能监控和故障诊断新方法.将样本数据用小波方法进行去噪处理,去除数据所包含的噪声,通过KPCA将降噪后的数据进行变换,在特征空间里构建T2和Q统计量来监测是否有故障发生;若发生故障,则计算数据的非线性主元得分向量,并将其作为PSVM的输入值,通过PSVM分类来确定故障的具体类型.流化催化裂化装置(FCCU)仿真试验验证了小波去噪的必要性和利用DKPCA-PSVM进行监控和故障诊断的有效性. 展开更多
关键词 小波去噪 性能监控 故障诊断 小波变换 主元分析 邻近支持向量
在线阅读 下载PDF
不同核函数支持向量机和可见-近红外光谱的多种植被叶片生化组分估算 被引量:13
16
作者 陈方圆 周鑫 +4 位作者 陈奕云 王奕涵 刘会增 王俊杰 邬国锋 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第2期428-434,共7页
氮、磷、钾元素是植物有机质的重要生化组分,准确估算其含量对监测管理植被的新陈代谢和健康状况具有重要意义。可见-近红外光谱结合多种建模方法已被用于植被生化参数的监测,其中支持向量机回归方法被证明能够较好拟合反射光谱和植被... 氮、磷、钾元素是植物有机质的重要生化组分,准确估算其含量对监测管理植被的新陈代谢和健康状况具有重要意义。可见-近红外光谱结合多种建模方法已被用于植被生化参数的监测,其中支持向量机回归方法被证明能够较好拟合反射光谱和植被生化参数之间的非线性关系,而选取适当的核函数是其成功的关键。以宜兴地区水稻、玉米、芝麻、大豆、茶叶、草地、乔木和灌木等八种植被叶片样本为研究对象,分析比较基于径向基核函数、多项式核函数和S形核函数的支持向量回归模型估算叶片氮、磷、钾元素含量的能力。利用一阶微分变换、标准正态变量变换和反对数变换对叶片可见-近红外光谱进行预处理,运用bootstrapping法生成1 000组校正集和验证集,分别建立基于三种核函数的支持向量回归估算模型,以决定系数(R2)和相对分析误差(RPD)的均值作为评价指标。结果显示,结合一阶微分和反对数变换光谱,采用径向基核函数模型对氮、钾元素估算精度最高(氮:平均R2=0.64,平均RPD=1.67;钾:平均R2=0.56,平均RPD=1.48),结合一阶微分变换光谱,采用径向基核函数模型对磷元素估算精度最高(磷:平均R2=0.68,平均RPD=1.73)。研究表明,结合不同预处理的可见-近红外光谱,基于径向基核函数的支持向量回归模型具有较好的估算多种植被叶片生化组分含量的潜力。 展开更多
关键词 函数 支持向量 可见-近红外光谱 生化组分
在线阅读 下载PDF
基于支持向量机分类问题的勒让德核函数 被引量:8
17
作者 张瑞 王文剑 +1 位作者 张亚丹 孙芳玲 《计算机科学》 CSCD 北大核心 2012年第7期222-224,共3页
基于勒让德正交多项式,提出了一类新的核函数——勒让德核函数。在双螺旋集和标准UCI数据集上的实验表明,在鲁棒性与泛化性能方面,该核函数比常用的核函数(多项式核、高斯径向基核等)具有更好的表现,而且其参数仅在自然数中取值,能大大... 基于勒让德正交多项式,提出了一类新的核函数——勒让德核函数。在双螺旋集和标准UCI数据集上的实验表明,在鲁棒性与泛化性能方面,该核函数比常用的核函数(多项式核、高斯径向基核等)具有更好的表现,而且其参数仅在自然数中取值,能大大缩短参数优化时间。 展开更多
关键词 支持向量 函数 模型选择
在线阅读 下载PDF
支持向量机在模式识别中的核函数特性分析 被引量:98
18
作者 李盼池 许少华 《计算机工程与设计》 CSCD 北大核心 2005年第2期302-304,共3页
支持向量机是20世纪90年代中期发展起来的一种机器学习技术,与传统人工神经网络不同之处在于前者基于结构风险最小化原理,后者基于经验风险最小化原理。支持向量机不仅结构简单,而且技术性能尤其是泛化能力与BP神经网络相比有明显提高... 支持向量机是20世纪90年代中期发展起来的一种机器学习技术,与传统人工神经网络不同之处在于前者基于结构风险最小化原理,后者基于经验风险最小化原理。支持向量机不仅结构简单,而且技术性能尤其是泛化能力与BP神经网络相比有明显提高。讨论了支持向量机的分类原理,并用多项式函数、径向基函数和感知机函数等3种核函数作为内积回旋,分别以平面点集分类、手写体汉字识别及双螺旋线识别为例,在不同的结构参数下进行了仿真实验,并对3种核函数的分类特性进行了对比分析,给出了在不同模式识别问题中3种核函数的选择条件。 展开更多
关键词 支持向量 函数 模式识别 感知 手写体汉字识别 器学习 结构风险最小化 内积 平面点集 多项式函数
在线阅读 下载PDF
一种支持向量机的组合核函数 被引量:22
19
作者 张冰 孔锐 《计算机应用》 CSCD 北大核心 2007年第1期44-46,共3页
核函数是支持向量机的核心,不同的核函数将产生不同的分类效果,核函数也是支持向量机理论中比较难理解的一部分。通过引入核函数,支持向量机可以很容易地实现非线性算法。首先探讨了核函数的本质,说明了核函数与所映射空间之间的关系,... 核函数是支持向量机的核心,不同的核函数将产生不同的分类效果,核函数也是支持向量机理论中比较难理解的一部分。通过引入核函数,支持向量机可以很容易地实现非线性算法。首先探讨了核函数的本质,说明了核函数与所映射空间之间的关系,进一步给出了核函数的构成定理和构成方法,说明了核函数分为局部核函数与全局核函数两大类,并指出了两者的区别和各自的优势。最后,提出了一个新的核函数———组合核函数,并将该核函数应用于支持向量机中,并进行了人脸识别实验,实验结果也验证了该核函数的有效性。 展开更多
关键词 支持向量 函数 组合函数 基于的学习
在线阅读 下载PDF
说话人识别中支持向量机核函数参数优化研究 被引量:50
20
作者 刘祥楼 贾东旭 +1 位作者 李辉 姜继玉 《科学技术与工程》 2010年第7期1669-1673,共5页
在基于SVM的说话人识别系统研究中,如何获得理想的识别率是亟待解决的问题。SVM核函数是众多影响识别率因素中最明显的。该系统提高识别率的技术关键是SVM核函数的选取及其参数优化。为此,在对三种常用核函数的特点进行研究的基础上,利... 在基于SVM的说话人识别系统研究中,如何获得理想的识别率是亟待解决的问题。SVM核函数是众多影响识别率因素中最明显的。该系统提高识别率的技术关键是SVM核函数的选取及其参数优化。为此,在对三种常用核函数的特点进行研究的基础上,利用网格搜索法来分别进行参数优选,通过实际语音的训练和识别验证识别效果。目前优选参数可以实现识别率≥99.9%且识别时间<0.1 s。 展开更多
关键词 支持向量 说话人识别 函数 参数优化 网格搜索法
在线阅读 下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部