期刊文献+
共找到1,809篇文章
< 1 2 91 >
每页显示 20 50 100
基于小波最小二乘支持向量机的加速度计温度建模和补偿 被引量:16
1
作者 于湘涛 张兰 +2 位作者 郭琳瑞 周峰 于皓 《中国惯性技术学报》 EI CSCD 北大核心 2011年第1期95-98,共4页
针对环境温度影响加速度计测量精度的问题,给出了温度对石英挠性加速度计零偏和标度因数的影响机理,提出采用小波最小二乘支持向量回归建立石英挠性加速度计零偏和标度因数的温度模型的方法。为了验证模型的有效性,进行了多个温度点下... 针对环境温度影响加速度计测量精度的问题,给出了温度对石英挠性加速度计零偏和标度因数的影响机理,提出采用小波最小二乘支持向量回归建立石英挠性加速度计零偏和标度因数的温度模型的方法。为了验证模型的有效性,进行了多个温度点下的参数标定试验,所获取的各温度点下的石英挠性加速度计零偏和标度因数作为小波最小二乘支持向量机模型的训练数据;将石英挠性加速度计固定在某一位置进行了升温试验,通过对比未进行温度补偿、最小二乘温度补偿和小波最小二乘支持向量回归温度补偿下石英挠性加速度计的输出,计算结果表明采用小波最小二乘支持向量机补偿后的石英挠性加速度计的测量精度最高。 展开更多
关键词 石英挠性加速度计 小波最小二乘支持向量机 模型辨识 温度补偿
在线阅读 下载PDF
基于最小二乘支持向量机和车辆荷载监测数据的悬索桥吊索疲劳寿命预测
2
作者 曾国良 邓扬 《桥梁建设》 北大核心 2025年第1期41-48,共8页
针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数... 针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数据的相关性模型,建模过程中考虑LSSVM模型输入与输出的最优模式以及训练数据长度;建立1根吊索(以29号吊索为例)与其它吊索的日疲劳损伤之间的相关性模型,预测其它吊索的疲劳损伤;考虑日车流量和等效车总重的增长,进行吊索疲劳寿命预测。结果表明:对于29号吊索的4种LSSVM模型,模型Ⅳ的边界条件较其它3种模型更为合理,测试数据的平均相对误差低于模型Ⅰ~Ⅲ;该方法将日疲劳损伤与车辆荷载监测数据进行直接关联;LSSVM相关性模型的预测能力依赖于训练样本的数量,当训练数据长度为284 d时,模型Ⅳ的预测能力较强,其平均相对误差低于5.5%;同时考虑日车流量和等效车总重增长时,疲劳累积损伤显著增长。 展开更多
关键词 悬索桥 吊索 结构健康监测 车辆荷载 疲劳损伤 疲劳寿命 最小乘支持向量 相关性模型
在线阅读 下载PDF
最小二乘小波支持向量机在非线性系统辨识中的应用 被引量:44
3
作者 崔万照 朱长纯 +1 位作者 保文星 刘君华 《西安交通大学学报》 EI CAS CSCD 北大核心 2004年第6期562-565,586,共5页
基于小波分解和支持向量核函数的条件,提出了一种多维允许支持向量小波核函数.该核函数不仅是近似正交的,而且适用于信号的局部分析、信噪分离和突变信号的检测,从而提高了支持向量机的泛化能力.基于小波核函数和正则化理论提出了最小... 基于小波分解和支持向量核函数的条件,提出了一种多维允许支持向量小波核函数.该核函数不仅是近似正交的,而且适用于信号的局部分析、信噪分离和突变信号的检测,从而提高了支持向量机的泛化能力.基于小波核函数和正则化理论提出了最小二乘小波支持向量机(LS WSVM)并将LS WSVM用于非线性系统的辨识,提高了辨识效果,减少了计算量.仿真结果表明:LS WSVM在同等条件下比传统支持向量机的辨识精度提高约13 1%,因而更适合于工程应用. 展开更多
关键词 小波核函数 最小二乘小波支持向量 非线性系统辨识
在线阅读 下载PDF
基于小波包变换的最小二乘支持向量机短期风速多步预测和信息粒化预测的研究 被引量:16
4
作者 柳玉 曾德良 +2 位作者 刘吉臻 白恺 宋鹏 《太阳能学报》 EI CAS CSCD 北大核心 2014年第2期214-220,共7页
讨论风电场短期风速多步预测和信息粒化预测,建模方法采用最小二乘支持向量机回归算法,数据处理方法采用小波包变换算法,在小波变换的基础上有选择地分解高频部分,可进一步提升预测精度。最后,将该文所提的建模方法应用于短期风速多步... 讨论风电场短期风速多步预测和信息粒化预测,建模方法采用最小二乘支持向量机回归算法,数据处理方法采用小波包变换算法,在小波变换的基础上有选择地分解高频部分,可进一步提升预测精度。最后,将该文所提的建模方法应用于短期风速多步预测和信息粒化预测。大量实例分析表明,多步预测方法可得到风速预测曲线,适用于含风电场的区域能源连续调度;信息粒化方法可处理冗余数据并得到较准确的风速预测的特征数据,能准确分析不同风电场或不同风电机组的机组特性。 展开更多
关键词 风速预测 最小乘支持向量 小波包变换 多步预测 信息粒化
在线阅读 下载PDF
具有间隔分布优化的最小二乘支持向量机
5
作者 刘玲 巩荣芬 +1 位作者 储茂祥 刘历铭 《微电子学与计算机》 2024年第8期1-9,共9页
最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LS... 最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LSSVM模型的泛化性能,提高其分类能力,提出一种具有间隔分布优化的最小二乘支持向量机(LSSVM with margin distribution optimization,MLSSVM)。首先,重新定义间隔均值和间隔方差,深入挖掘数据的间隔分布信息,增强模型的泛化性能;其次,引入权重线性损失,进一步优化了间隔均值,提升模型的分类精度;然后,分析目标函数,剔除冗余项,进一步优化间隔方差;最后,保留LSSVM的求解机制,保障模型的计算效率。实验表明,新提出的分类模型具有良好的泛化性能和运行时间。 展开更多
关键词 最小乘支持向量 大间隔分布 间隔分布优化 权重线性损失
在线阅读 下载PDF
基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型
6
作者 田水承 任治鹏 毛俊睿 《矿业安全与环保》 CAS 北大核心 2024年第4期110-116,共7页
为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后... 为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后,采用主成分分析法对选取的特征指标进行降维处理,建立表征矿工疲劳程度的特征集;在此基础上,利用遗传算法优化最小二乘支持向量机的关键参数,构建矿工疲劳程度识别模型。结果表明:选取的矿工疲劳程度特征指标能够有效反映矿工的疲劳程度;相较GA-SVM和LSSVM模型,融合GA-LSSVM模型可显著提高矿工疲劳程度的识别准确率(平均识别准确率为96.87%)。构建的矿工疲劳程度识别模型可较为高效地识别矿工的疲劳程度,对煤矿人因事故的防控具有一定的现实指导意义。 展开更多
关键词 矿工 疲劳识别 心电信号 最小乘支持向量 遗传算法
在线阅读 下载PDF
基于小波分析的最小二乘支持向量机轨道交通客流预测方法 被引量:37
7
作者 杨军 侯忠生 《中国铁道科学》 EI CAS CSCD 北大核心 2013年第3期122-127,共6页
针对城市轨道交通客流预测问题,采用离散一维Daub4小波分析方法对某一时间段的原始客流时间序列数据进行分解;以分解得到的高频分量和低频分量为样本数据,对最小二乘支持向量机进行训练,确定最小二乘支持向量机的核参数σ,以及系数α和... 针对城市轨道交通客流预测问题,采用离散一维Daub4小波分析方法对某一时间段的原始客流时间序列数据进行分解;以分解得到的高频分量和低频分量为样本数据,对最小二乘支持向量机进行训练,确定最小二乘支持向量机的核参数σ,以及系数α和b。利用训练后的最小二乘支持向量机预测未来一段时间客流时间序列数据的高频分量和低频分量,然后再利用Daub4小波分析方法对预测的高频分量和低频分量进行数据重构,从而得到预测的未来一段时间客流时间序列数据。与历史平均预测法和灰色预测法进行比较,结果表明,基于小波分析的支持向量机客流预测方法用于轨道交通短期客流预测具有更好的精度。 展开更多
关键词 轨道交通 客流预测 短期预测 小波分析 支持向量 数据处理
在线阅读 下载PDF
最小二乘支持向量机在蒸发波导预测中的应用 被引量:4
8
作者 杨超 郭立新 吴振森 《电波科学学报》 EI CSCD 北大核心 2010年第4期632-637,共6页
针对蒸发波导中折射率剖面与雷达海杂波功率之间的非线性关系,利用最小二乘支持向量机预测了蒸发波导的折射率剖面。由于最小二乘支持向量机是基于数据库的一种学习算法,通过正向传播模型产生的训练数据库来训练最小二乘支持向量机。其... 针对蒸发波导中折射率剖面与雷达海杂波功率之间的非线性关系,利用最小二乘支持向量机预测了蒸发波导的折射率剖面。由于最小二乘支持向量机是基于数据库的一种学习算法,通过正向传播模型产生的训练数据库来训练最小二乘支持向量机。其中正向传播模型采用抛物方程方法,通过将抛物方程的传播损耗结果和实测数据进行对比,验证了正向传播模型的准确性。基于实测数据来验证最小二乘支持向量机,预测结果表明最小二乘支持向量机在蒸发波导预测中的准确性。 展开更多
关键词 蒸发 最小乘支持向量 抛物方程 海杂 传播损耗
在线阅读 下载PDF
最小二乘小波支持向量机在电力负荷预测中的应用 被引量:11
9
作者 张政国 吴艾玲 《兰州交通大学学报》 CAS 2016年第4期65-71,共7页
针对中期电力负荷预测问题,提出了一种基于多维允许小波核的最小二乘小波支持向量机(least squares wavelet support vector machines,LS-WSVM)方法,并且给出了一种可有效求解LS-WSVM的Cholesky分解算法.该方法结合小波技术和最小二乘... 针对中期电力负荷预测问题,提出了一种基于多维允许小波核的最小二乘小波支持向量机(least squares wavelet support vector machines,LS-WSVM)方法,并且给出了一种可有效求解LS-WSVM的Cholesky分解算法.该方法结合小波技术和最小二乘支持向量机,其中小波核函数具有近似正交以及适用于局部信号分析的特性.将LS-WSVM应用于电力负荷预测的两个实例中,结果表明,与LS-SVM、标准SVM、多层前向神经网络等方法相比,LS-WSVM均能给出相当好的预测性能,所提出的用于中期电力负荷预测的LS-WSVM方法显示了其有效性和应用潜能. 展开更多
关键词 电力负荷预测 最小乘支持向量 小波核函数 Cholesky算法
在线阅读 下载PDF
基于最小二乘支持向量机的造纸工控网络高隐蔽性入侵检测 被引量:2
10
作者 秦宁宁 《造纸科学与技术》 2024年第1期42-47,共6页
造纸工控网络的数据特征具有复杂性和多样性,对于高隐蔽性入侵行为,其特征可能被混杂在正常操作和噪声中,增加了检测的难度。为此,提出基于最小二乘支持向量机的造纸工控网络高隐蔽性入侵检测方法。首先,使用CEEMD算法对网络数据进行分... 造纸工控网络的数据特征具有复杂性和多样性,对于高隐蔽性入侵行为,其特征可能被混杂在正常操作和噪声中,增加了检测的难度。为此,提出基于最小二乘支持向量机的造纸工控网络高隐蔽性入侵检测方法。首先,使用CEEMD算法对网络数据进行分解,得到一系列固有模态分量(IMF),利用排列熵对IMF分量进行分析,确定高噪声IMF分量;使用小波降噪对高噪声IMF分量展开抗干扰处理。然后,使用互信息特征选择方法对抗干扰处理后的入侵数据进行特征提取。最后,将提取到的入侵数据特征作为输入数据,通过最小二乘支持向量机(LS-SVM)建立一个判别函数,该函数根据输入数据的特征值进行分类,并判断网络中是否存在高隐蔽性入侵行为。实验结果表明,所提方法最高入侵检测准确率达到0.98,Kappa统计量最大为0.99,表明所提方法的数据处理效果好、网络入侵检测精度高。 展开更多
关键词 网络入侵检测 最小乘支持向量 小波阈值降噪 排列熵 互信息特征选择
在线阅读 下载PDF
基于平滑滤波与最小二乘支持向量机的指纹图像识别研究 被引量:3
11
作者 宋召青 程子君 郑苏 《海军航空工程学院学报》 2010年第2期172-176,180,共6页
平滑滤波能抑制或?肖除噪声,获得高质量的图像。建立了完整的指纹识别系统,通过预处理、特征提取和分类识别3个过程,实现了指纹的分类识别;研究了预处理过程中的滤波增强方法,比较了邻域平均、高斯平滑和中值滤波的处理效果;在... 平滑滤波能抑制或?肖除噪声,获得高质量的图像。建立了完整的指纹识别系统,通过预处理、特征提取和分类识别3个过程,实现了指纹的分类识别;研究了预处理过程中的滤波增强方法,比较了邻域平均、高斯平滑和中值滤波的处理效果;在识别阶段采用最小二乘支持向量机,进行指纹识别实验,并对实验结果进行了比较。 展开更多
关键词 平滑滤 特征提取 最小乘支持向量 指纹识别
在线阅读 下载PDF
基于改进经验小波变换和最小二乘支持向量机的短期风速预测 被引量:23
12
作者 向玲 邓泽奇 《太阳能学报》 EI CAS CSCD 北大核心 2021年第2期97-103,共7页
针对原始风速信号非线性和非平稳性的特征,提出一种新的改进经验小波变换(IEWT)方法,该方法可将风速信号分解成一组有限带宽的子序列,以降低其不稳定性。在此基础上,结合最小二乘支持向量机(LSSVM),提出基于改进经验小波变换和最小二乘... 针对原始风速信号非线性和非平稳性的特征,提出一种新的改进经验小波变换(IEWT)方法,该方法可将风速信号分解成一组有限带宽的子序列,以降低其不稳定性。在此基础上,结合最小二乘支持向量机(LSSVM),提出基于改进经验小波变换和最小二乘支持向量机(IEWT-LSSVM)的短期风速预测方法,并通过模拟退火粒子群优化算法(SAPSO)对相空间重构参数以及LSSVM模型的2个超参数进行共同优化。最后以华北某风电场采集的风速信号为算例,结果表明基于IEWT-LSSVM的预测模型能有效追踪风速信号的变化,在单步预测和多步预测上均具有较高的预测精度。 展开更多
关键词 风速预测 相空间重构 最小乘支持向量 模拟退火粒子群算法 经验小波变换
在线阅读 下载PDF
基于最小二乘支持向量机的农村土地利用空间优化配置方法及实例分析 被引量:2
13
作者 黄晓磊 冯长委 《现代农业科技》 2024年第8期185-188,共4页
因为农村各类用地数据具有样本小、非线性等特点,导致土地利用空间配置结果的适宜性较差,所以本文提出基于最小二乘支持向量机的农村土地利用空间优化配置方法。基于最小二乘支持向量机预测农村土地利用空间格局,得到各类用地面积数据,... 因为农村各类用地数据具有样本小、非线性等特点,导致土地利用空间配置结果的适宜性较差,所以本文提出基于最小二乘支持向量机的农村土地利用空间优化配置方法。基于最小二乘支持向量机预测农村土地利用空间格局,得到各类用地面积数据,对各类用地进行满足经济效益与生态效益最大化的多目标函数的优化配置。实例结果表明,农村土地利用空间优化配置结果中各用地类型高度适宜区域的面积占比均超过75%,证实了设计方法的合理性。 展开更多
关键词 最小乘支持向量 农村土地 土地利用 空间优化配置
在线阅读 下载PDF
最小二乘Littlewood-Paley小波支持向量机在发酵过程建模中的应用
14
作者 章瑶 刘春波 潘丰 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第A02期107-110,共4页
针对谷氨酸发酵过程一些关键参数不能在线测量而导致的建模精度不高问题,利用最小二乘支持向量机(LSSVM)和小波的理论,建立了一种新的模型.首先,选取Littlewood-Paley小波函数作为LS-WSVM的核函数,进而设计出最小二乘小波支持向量机(LS-... 针对谷氨酸发酵过程一些关键参数不能在线测量而导致的建模精度不高问题,利用最小二乘支持向量机(LSSVM)和小波的理论,建立了一种新的模型.首先,选取Littlewood-Paley小波函数作为LS-WSVM的核函数,进而设计出最小二乘小波支持向量机(LS-WSVM),然后利用该算法对谷氨酸发酵过程进行建模.通过实际应用,实现了对残糖浓度、菌体浓度、谷氨酸浓度等不能在线测量变量的较准确预测,相对于LSSVM建模而言,提高了一个数量级,预测误差也明显得到改善,说明了该建模方法的有效性,具有一定的推广和应用价值. 展开更多
关键词 最小二乘Littlewood-Paley小波支持向量 建模 谷氨酸
在线阅读 下载PDF
曲波变换和最小二乘支持向量机的图像压缩算法
15
作者 刘康明 《激光杂志》 CAS CSCD 北大核心 2014年第12期36-39,44,共5页
为了提高图像压缩质量,针对传统压缩算法的不足,提出一种曲波变换和最小二乘支持向量机相融合的图像压缩算法。首先采用曲波变换把图像分解为不同尺度和不同方向的曲波系数,并采用熵编码对粗尺度层曲波系数进行压缩,然后利用最小二乘支... 为了提高图像压缩质量,针对传统压缩算法的不足,提出一种曲波变换和最小二乘支持向量机相融合的图像压缩算法。首先采用曲波变换把图像分解为不同尺度和不同方向的曲波系数,并采用熵编码对粗尺度层曲波系数进行压缩,然后利用最小二乘支持向量机对细尺度层中不同方向的曲波系数进行学习,并通过和声搜索算法优化最小二乘支持向量机,实现细尺度层曲波数的压缩,最后采用图像压缩仿真实验测试其性能。结果表明,曲波变换和最小二乘支持向量机相融合的图像压缩算法提高了图像压缩的峰值信噪比,加快了图像压缩的速度,获得了更好的图像压缩效果。 展开更多
关键词 图像压缩 最小乘支持向量 变换 和声搜索算法
在线阅读 下载PDF
基于小波分解和最小二乘支持向量机的COD预测 被引量:4
16
作者 刘伟 李春青 张艳芬 《微电子学与计算机》 CSCD 北大核心 2013年第4期26-29,共4页
膜生物反应器(MBR)的化学需氧量(COD),其值大小反映污水处理系统是否良好运行,对整个系统正常运行有重要意义.我们针对COD的非线性特征,引入基于小波分析和最小二乘向量机(LSSVM)的预测模型(WLSSVM).利用Mallat塔式分解算法获取趋势项... 膜生物反应器(MBR)的化学需氧量(COD),其值大小反映污水处理系统是否良好运行,对整个系统正常运行有重要意义.我们针对COD的非线性特征,引入基于小波分析和最小二乘向量机(LSSVM)的预测模型(WLSSVM).利用Mallat塔式分解算法获取趋势项与随机项,然后利用最小二乘支持向量机对时间序列分别预测,最后将各尺度下的分量整合作为预测值.试验结果表明,该模型具有较高的精度,是科学可行的. 展开更多
关键词 膜生物反应器 时间序列 最小乘支持向量 小波分解
在线阅读 下载PDF
基于形态优化滤波和最小二乘支持向量机的轴承故障分析 被引量:2
17
作者 饶杰 张绍旺 +1 位作者 徐光荣 张勇 《中国测试》 北大核心 2017年第4期110-113,139,共5页
为实现滚动轴承故障分析,提出基于形态优化滤波和最小二乘支持向量机的轴承故障分析方法。首先,通过判别指标最大化原则确定最佳形态滤波算子;然后,用最佳形态滤波算子对滚动轴承实例故障信号进行降噪分析;最后,利用粒子群对模型参数进... 为实现滚动轴承故障分析,提出基于形态优化滤波和最小二乘支持向量机的轴承故障分析方法。首先,通过判别指标最大化原则确定最佳形态滤波算子;然后,用最佳形态滤波算子对滚动轴承实例故障信号进行降噪分析;最后,利用粒子群对模型参数进行寻优,利用最小二乘支持向量机建立轴承故障分析模型,并对模型效果进行评价。实验结果表明:该方法从模型稳定性、预测准确度、模型复杂度3个方面考虑,故障分析结果较优,能够更好地提取轴承故障特征信息。 展开更多
关键词 滚动轴承 特征提取 形态滤 最小乘支持向量 故障诊断
在线阅读 下载PDF
模糊最小二乘支持向量机在黑液波美度软测量中的应用 被引量:1
18
作者 李瑾 汤伟 《航天制造技术》 2008年第2期51-53,共3页
利用模糊最小二乘支持向量机进行软测量建模。并将基于最小二乘支持向量机的软测量器应用于造纸碱回收中黑液浓度的在线估算,取得了十分有效的应用结果。模糊最小二乘支持向量机收敛速度快,模型参数确定方便。因此基于模糊最小二乘支持... 利用模糊最小二乘支持向量机进行软测量建模。并将基于最小二乘支持向量机的软测量器应用于造纸碱回收中黑液浓度的在线估算,取得了十分有效的应用结果。模糊最小二乘支持向量机收敛速度快,模型参数确定方便。因此基于模糊最小二乘支持向量机的软测量器在软测量建模中有很大的应用潜力。 展开更多
关键词 软测量 最小乘支持向量 模糊隶属度 模型参数
在线阅读 下载PDF
基于最小二乘支持向量机的数控机床热误差预测 被引量:39
19
作者 林伟青 傅建中 +1 位作者 许亚洲 陈子辰 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第6期905-908,共4页
为实现数控机床热误差的补偿控制,提出基于最小二乘支持向量机进行数控机床热误差建模预测的方法.根据最小二乘支持向量机回归预测的原理,优化选择最小二乘支持向量机参数,对数控车床热误差进行最小二乘支持向量机建模.通过测量数控车... 为实现数控机床热误差的补偿控制,提出基于最小二乘支持向量机进行数控机床热误差建模预测的方法.根据最小二乘支持向量机回归预测的原理,优化选择最小二乘支持向量机参数,对数控车床热误差进行最小二乘支持向量机建模.通过测量数控车床主轴温升值与主轴热变形量,将获得的数据进行最小二乘支持向量机建模训练,以建立机床热误差预测模型.实验结果表明,该模型能有效描述热动态误差,与最小二乘法建模进行比较,结果显示,基于最小二乘支持向量机的数控机床热误差预测模型精度高、泛化能力强;采用最小二乘支持向量机得到的预测模型可用于数控机床热误差实时补偿,以提高机床的加工精度.. 展开更多
关键词 支持向量 最小乘支持向量 热误差 预测
在线阅读 下载PDF
自适应迭代最小二乘支持向量机回归算法 被引量:14
20
作者 杨滨 杨晓伟 +3 位作者 黄岚 梁艳春 周春光 吴春国 《电子学报》 EI CAS CSCD 北大核心 2010年第7期1621-1625,共5页
基于最小二乘支持向量机回归算法,本文在前期工作的基础上进行了扩展,提出了更加详尽的自适应迭代最小二乘支持向量机回归算法.与标准的LSSVR相比,本文提出的算法在学习新样本的时候利用了已有的学习结果,可以快速获得新的学习机.模拟... 基于最小二乘支持向量机回归算法,本文在前期工作的基础上进行了扩展,提出了更加详尽的自适应迭代最小二乘支持向量机回归算法.与标准的LSSVR相比,本文提出的算法在学习新样本的时候利用了已有的学习结果,可以快速获得新的学习机.模拟结果表明,自适应迭代最小二乘支持向量机回归算法能够自适应地确定支持向量的数目,保留了QP方法在训练SVM时支持向量的稀疏性,在相近的回归精度下,该算法极大地提高了标准LSSVR学习的速度. 展开更多
关键词 支持向量 自适应 迭代 回归 最小二乘
在线阅读 下载PDF
上一页 1 2 91 下一页 到第
使用帮助 返回顶部