针对PCB产品视觉检测中图像缺陷细微、形状复杂、特征难于提取、易受噪声影响的问题,提出基于小波变换和光滑支持向量机集成SSVME(Smooth Support Vector Machine Ensemble)的多分类方法,有效解决了细微、复杂缺陷难以识别分类的问题。...针对PCB产品视觉检测中图像缺陷细微、形状复杂、特征难于提取、易受噪声影响的问题,提出基于小波变换和光滑支持向量机集成SSVME(Smooth Support Vector Machine Ensemble)的多分类方法,有效解决了细微、复杂缺陷难以识别分类的问题。实验表明,该方法六类缺陷混合识别率达到95.26%,高于BP神经网络的最优识别率90.35%和基于区域方法的80.67%,而且训练和分类时间短。从理论和实验中验证了该方法的有效性,是PCB产品视觉检测领域中缺陷识别分类的新方法,具有重要的应用价值。展开更多
为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish s...为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish swarm algorithm,AFSA)基于分解余量与整体正交系数研究了TQWT的优化分解方法,计算得到了OLTC振动信号的多个子序列,构建了基于优化孪生支持向量机(twin support vector machine,TWSVM)的OLTC机械故障诊断模型。对某CM型OLTC正常与典型机械故障下振动信号的分析结果表明,所提优化TQWT分解方法有效提高了OLTC振动信号分解结果的准确性。相对于其他诊断模型,所构建AFSA-TWSVM的OLTC机械故障诊断模型分类效果好且收敛速度更快。展开更多
文摘针对PCB产品视觉检测中图像缺陷细微、形状复杂、特征难于提取、易受噪声影响的问题,提出基于小波变换和光滑支持向量机集成SSVME(Smooth Support Vector Machine Ensemble)的多分类方法,有效解决了细微、复杂缺陷难以识别分类的问题。实验表明,该方法六类缺陷混合识别率达到95.26%,高于BP神经网络的最优识别率90.35%和基于区域方法的80.67%,而且训练和分类时间短。从理论和实验中验证了该方法的有效性,是PCB产品视觉检测领域中缺陷识别分类的新方法,具有重要的应用价值。
文摘为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish swarm algorithm,AFSA)基于分解余量与整体正交系数研究了TQWT的优化分解方法,计算得到了OLTC振动信号的多个子序列,构建了基于优化孪生支持向量机(twin support vector machine,TWSVM)的OLTC机械故障诊断模型。对某CM型OLTC正常与典型机械故障下振动信号的分析结果表明,所提优化TQWT分解方法有效提高了OLTC振动信号分解结果的准确性。相对于其他诊断模型,所构建AFSA-TWSVM的OLTC机械故障诊断模型分类效果好且收敛速度更快。