期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种结合小波去噪卷积与稀疏Transformer的调制识别方法
1
作者 郑庆河 刘方霖 +3 位作者 余礼苏 姜蔚蔚 黄崇文 桂冠 《电子与信息学报》 北大核心 2025年第7期2361-2374,共14页
针对Transformer模型处理时域信号长度受限以及忽略有序特征元素相关性的问题,该文提出一种结合小波去噪卷积与稀疏Transformer的方法用于调制识别。首先,提出可学习的小波去噪卷积帮助深度学习模型提取合适的去噪信号表征,并将自适应... 针对Transformer模型处理时域信号长度受限以及忽略有序特征元素相关性的问题,该文提出一种结合小波去噪卷积与稀疏Transformer的方法用于调制识别。首先,提出可学习的小波去噪卷积帮助深度学习模型提取合适的去噪信号表征,并将自适应的时频特征纳入目标函数的泛函策略中。然后,设计稀疏前馈神经网络替换传统Transformer中的注意力机制,用于对元素关系进行建模,并根据信号域中的少量关键元素对训练过程的梯度进行有效优化。在公开数据集RadioML 2016.10a和RML22的实验结果表明,稀疏Transformer模型能够分别取得63.84%和71.13%的平均分类准确率。与一系列深度学习模型对比,整体分类准确率提升了4%~10%,进一步证明了方法的有效性。此外,超参数消融实验验证了模型组件在复杂移动通信环境中的鲁棒性和实用性。 展开更多
关键词 调制分类 深度学习 稀疏Transformer 小波去噪卷积
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部