图像的边缘检测在实际生活中广泛应用,但其检测结果仍存在细节丢失问题。为此提出一种新的图像边缘检测算法。首先,采用二维二进制小波变换,对图像进行预处理;然后,结合一种新的自适应双阈值算法,检测出图像的边缘点;最后,采用改进的数...图像的边缘检测在实际生活中广泛应用,但其检测结果仍存在细节丢失问题。为此提出一种新的图像边缘检测算法。首先,采用二维二进制小波变换,对图像进行预处理;然后,结合一种新的自适应双阈值算法,检测出图像的边缘点;最后,采用改进的数学形态学梯度检测算法,对图像的边缘信息进行进一步检测。通过仿真实验得出,新算法能够检测到更丰富的图像边缘信息,使图像的边缘提取更清晰、细腻;与单一形态学算法相比,新算法使图像的均方误差值大幅度降低、峰值信噪比提高了2.3 d B。展开更多
Traditional watermark embedding schemes inevitably modify the data in a host audio signal and lead to the degradation of the host signal.In this paper,a novel audio zero-watermarking algorithm based on discrete wavele...Traditional watermark embedding schemes inevitably modify the data in a host audio signal and lead to the degradation of the host signal.In this paper,a novel audio zero-watermarking algorithm based on discrete wavelet transform(DWT),discrete cosine transform(DCT),and singular value decomposition(SVD) is presented.The watermark is registered by performing SVD on the coefficients generated through DWT and DCT to avoid data modification and host signal degradation.Simulation results show that the proposed zero-watermarking algorithm is strongly robust to common signal processing methods such as requantization,MP3 compression,resampling,addition of white Gaussian noise,and low-pass filtering.展开更多
文摘图像的边缘检测在实际生活中广泛应用,但其检测结果仍存在细节丢失问题。为此提出一种新的图像边缘检测算法。首先,采用二维二进制小波变换,对图像进行预处理;然后,结合一种新的自适应双阈值算法,检测出图像的边缘点;最后,采用改进的数学形态学梯度检测算法,对图像的边缘信息进行进一步检测。通过仿真实验得出,新算法能够检测到更丰富的图像边缘信息,使图像的边缘提取更清晰、细腻;与单一形态学算法相比,新算法使图像的均方误差值大幅度降低、峰值信噪比提高了2.3 d B。
基金supported by the Open Foundation of Jiangsu Engineering Center of Network Monitoring(Nanjing University of Information Science&Technology)(Grant No.KJR1509)the PAPD fundthe CICAEET fund
文摘Traditional watermark embedding schemes inevitably modify the data in a host audio signal and lead to the degradation of the host signal.In this paper,a novel audio zero-watermarking algorithm based on discrete wavelet transform(DWT),discrete cosine transform(DCT),and singular value decomposition(SVD) is presented.The watermark is registered by performing SVD on the coefficients generated through DWT and DCT to avoid data modification and host signal degradation.Simulation results show that the proposed zero-watermarking algorithm is strongly robust to common signal processing methods such as requantization,MP3 compression,resampling,addition of white Gaussian noise,and low-pass filtering.