期刊文献+
共找到80篇文章
< 1 2 4 >
每页显示 20 50 100
一种适用于小样本问题的基于边界的特征提取算法 被引量:6
1
作者 黄睿 何明一 杨少军 《计算机学报》 EI CSCD 北大核心 2007年第7期1173-1178,共6页
特征提取技术是模式识别领域进行数据降维和强化判别信息的有效方法.线性判别分析是监督特征提取方法的典型代表,获得广泛应用,但受到小样本问题的制约.对此提出一种适用于小样本问题的基于边界的特征提取算法.算法利用高维数据小样... 特征提取技术是模式识别领域进行数据降维和强化判别信息的有效方法.线性判别分析是监督特征提取方法的典型代表,获得广泛应用,但受到小样本问题的制约.对此提出一种适用于小样本问题的基于边界的特征提取算法.算法利用高维数据小样本情况下线性可分概率增加以及其低维投影趋于正态分布的特点,定义了新的类别边界,不但考虑了由线性判别分析提出的类内、类间离散度,也兼顾各类别的方差差异性.通过极大化该边界获得最优投影向量,同时避免因类内离散度矩阵奇异导致的小样本问题.进一步将算法推广到多类问题.高光谱数据特征提取与分类实验表明,算法在小样本情况下对于两类和多类问题均具有良好的推广性能,优于多种线性判别分析的改进算法,并且在样本较多时也取得了满意结果. 展开更多
关键词 特征提取 线性判别分析 小样本问题 模式分类 最大化类别边界
在线阅读 下载PDF
利用Gabor小波变换解决人脸识别中的小样本问题 被引量:20
2
作者 聂祥飞 郭军 《光学精密工程》 EI CAS CSCD 北大核心 2007年第6期973-977,共5页
提出了一种在人脸识别中解决小样本问题的新算法。通过把人脸图像经过Gabor小波变换后得到的每个图像都看成是独立的样本,大大增加了每一类人脸样本的样本数,解决了人脸识别中的小样本问题。专门针对人脸特征向量组,设计了使用白化变换... 提出了一种在人脸识别中解决小样本问题的新算法。通过把人脸图像经过Gabor小波变换后得到的每个图像都看成是独立的样本,大大增加了每一类人脸样本的样本数,解决了人脸识别中的小样本问题。专门针对人脸特征向量组,设计了使用白化变换后余弦距离测度的最近邻分类器来进行分类判决。在FERET人脸库中,对该方法与直接PCA方法进行了实验比较,结果表明,新方法的平均正确识别率可以达到97%,比直接PCA方法具有更好的识别性能。 展开更多
关键词 人脸识别 GABOR小波变换 小样本问题
在线阅读 下载PDF
适用于小样本问题的有监督边界检测方法
3
作者 高梁 廖志武 +1 位作者 刘晓云 陈武凡 《计算机应用》 CSCD 北大核心 2011年第10期2697-2701,共5页
针对自然图像纹理复杂的特点,提出了一种多种信息融合的有监督边界检测方法。首先,该方法在小样本的情况下,通过快速生成纹理基元特征来引入纹理信息;然后,根据图像中每个像素邻域内的灰度分布和纹理基元分布的差异来计算灰度梯度和纹... 针对自然图像纹理复杂的特点,提出了一种多种信息融合的有监督边界检测方法。首先,该方法在小样本的情况下,通过快速生成纹理基元特征来引入纹理信息;然后,根据图像中每个像素邻域内的灰度分布和纹理基元分布的差异来计算灰度梯度和纹理梯度,并在此基础上构造出二维的梯度特征向量;接着,用有监督的分类器进行分类,自适应地检测出初始的边缘点;最后,设计一个边界定位函数确定最终的边缘点,实现边界检测。实验结果表明,该算法运算速度较快,所检测的边界效果好。 展开更多
关键词 小样本问题 边界检测 纹理基元 监督学习 分类器
在线阅读 下载PDF
基于双曲余弦矩阵鉴别分析的小样本问题研究 被引量:2
4
作者 冉瑞生 张守贵 +1 位作者 任银山 房斌 《计算机应用研究》 CSCD 北大核心 2020年第8期2517-2521,共5页
线性判别分析(LDA)是模式识别领域的一个经典方法,但是LDA难以克服小样本问题。针对LDA的小样本问题,提出一种双曲余弦矩阵鉴别分析方法(HCDA)。该方法首先给出了双曲余弦矩阵函数的定义及其特征系统,再利用双曲余弦矩阵函数特征系统的... 线性判别分析(LDA)是模式识别领域的一个经典方法,但是LDA难以克服小样本问题。针对LDA的小样本问题,提出一种双曲余弦矩阵鉴别分析方法(HCDA)。该方法首先给出了双曲余弦矩阵函数的定义及其特征系统,再利用双曲余弦矩阵函数特征系统的特点,将其引入Fisher准则中进行特征提取。HCDA有两方面的优势:a)避免了小样本问题,可以提取更多的鉴别信息;b) HCDA方法隐含了一个非线性映射。该映射具有扩大样本间距离的作用,并且对不同类别样本间距离的扩大尺度要大于同类别样本间距离的扩大尺度,从而更有利于模式分类。在手写数字库、手写字母图像库和Georgia Tech人脸图像库上的实验结果表明,相对于具有代表性的解决LDA小样本问题的方法,HCDA具有更好的识别性能。 展开更多
关键词 双曲余弦函数 矩阵函数 线性判别分析 小样本问题
在线阅读 下载PDF
采用虚拟训练样本优化正则化判别分析 被引量:17
5
作者 王卫东 郑宇杰 杨静宇 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2006年第9期1327-1331,共5页
在模式特征子空间中选取一组标准正交向量,使用这组向量可以生成大量的虚拟训练样本,从而实现对协方差矩阵的优化.在ORL人脸库上的实验表明,优化后协方差矩阵的特征值均显著变大,使该矩阵的逆阵稳定性得到了提高.利用优化的协方差矩阵... 在模式特征子空间中选取一组标准正交向量,使用这组向量可以生成大量的虚拟训练样本,从而实现对协方差矩阵的优化.在ORL人脸库上的实验表明,优化后协方差矩阵的特征值均显著变大,使该矩阵的逆阵稳定性得到了提高.利用优化的协方差矩阵对正则化判别分析方法进行优化,其模式分类正确率有显著提高. 展开更多
关键词 小样本问题 正则化判别分析 虚拟样本 优化方法 特征提取 人脸识别
在线阅读 下载PDF
一种基于KCCA的小样本脸像鉴别方法 被引量:8
6
作者 贺云辉 赵力 邹采荣 《应用科学学报》 CAS CSCD 北大核心 2006年第2期140-144,共5页
基于典型相关分析和Fisher线性鉴别分析的等价性,提出了利用核典型相关分析来抽取小样本人脸图像的非线性鉴别特征,并用其进行脸像鉴别.这样得到的非线性特征本质上等价于核Fisher非线性最佳鉴别特征.基于ORL库的实验表明,对小样本人脸... 基于典型相关分析和Fisher线性鉴别分析的等价性,提出了利用核典型相关分析来抽取小样本人脸图像的非线性鉴别特征,并用其进行脸像鉴别.这样得到的非线性特征本质上等价于核Fisher非线性最佳鉴别特征.基于ORL库的实验表明,对小样本人脸图像,KCCA可以得到和广义鉴别分析近似的识别性能,其所得非线性特征明显优于FLDA的线性鉴别特征. 展开更多
关键词 典型相关分析 核方法 FISHER鉴别分析 小样本问题 脸像鉴别
在线阅读 下载PDF
采用虚拟训练样本的二次判别分析方法 被引量:16
7
作者 王卫东 杨静宇 《自动化学报》 EI CSCD 北大核心 2008年第4期400-407,共8页
小样本问题会造成各类协方差矩阵的奇异性和不稳定性.本文采用对训练样本进行扰动的方法来生成虚拟训练样本,利用这些虚拟训练样奉克服了各类协方差矩阵的奇异性问题,从而可以直接使用二次判别分析(Quadratic discriminant analysis,QDA... 小样本问题会造成各类协方差矩阵的奇异性和不稳定性.本文采用对训练样本进行扰动的方法来生成虚拟训练样本,利用这些虚拟训练样奉克服了各类协方差矩阵的奇异性问题,从而可以直接使用二次判别分析(Quadratic discriminant analysis,QDA)方法.本文方法克服了正则化判别分析(Regularized discriminant analysis,RDA)需要进行参数优化的问题.实验结果表明,QDA的模式识别率优于参数最优化时RDA算法的识别率. 展开更多
关键词 小样本问题 二次判别分析 虚拟训练样本 扰动方法 分类器 人脸识别
在线阅读 下载PDF
二维典型相关分析在小样本图像识别上的应用 被引量:4
8
作者 孙宁 宋莹 +1 位作者 成伟明 赵春光 《计算机工程与应用》 CSCD 北大核心 2010年第5期177-180,共4页
针对传统典型相关分析(Canonical Correlation Analysis,CCA)的图像识别中出现的小样本(Small Sample Size,SSS)问题,提出二维典型相关分析(Two-Dimensional CCA,2DCCA)。首先阐述了2DCCA方法的基本原理并给出了类成员关系矩阵的构造方... 针对传统典型相关分析(Canonical Correlation Analysis,CCA)的图像识别中出现的小样本(Small Sample Size,SSS)问题,提出二维典型相关分析(Two-Dimensional CCA,2DCCA)。首先阐述了2DCCA方法的基本原理并给出了类成员关系矩阵的构造方法,推导出了类成员关系协方差矩阵广义逆的解析解。其次,从理论上证明了2DCCA方法对于解决小样本问题的有效性。最后,利用人脸识别实验来测试该方法的性能,实验结果表明,2DCCA方法有效地解决了图像识别中常见的小样本问题,并且能取得较其他几种基于CCA的人脸识别方法更优的识别结果。 展开更多
关键词 典型相关分析 二维典型相关分析 图像识别 小样本问题
在线阅读 下载PDF
基于两空间线性鉴别分析的小样本人脸识别 被引量:3
9
作者 赵明华 李鹏 刘直芳 《光电工程》 EI CAS CSCD 北大核心 2008年第9期127-132,共6页
指出了线性鉴别分析及其几种改进方法在处理小样本人脸识别问题时存在的不足,提出了一种基于两空间线性鉴别分析的小样本人脸识别方法。首先将样本投影到总体散布矩阵的非零空间中进行分析;进而将类内散布矩阵分成零空间和非零空间进行... 指出了线性鉴别分析及其几种改进方法在处理小样本人脸识别问题时存在的不足,提出了一种基于两空间线性鉴别分析的小样本人脸识别方法。首先将样本投影到总体散布矩阵的非零空间中进行分析;进而将类内散布矩阵分成零空间和非零空间进行鉴别向量确定和鉴别特征提取,最后将得到的两种鉴别特征融合,从而使用最近邻法进行分类。实验结果表明,在进行小样本的人脸识别时,该方法的识别效果优于其他线性方法。 展开更多
关键词 人脸识别 特征提取 线性鉴别分析 小样本问题 散布矩阵
在线阅读 下载PDF
基于虚拟样本的加权稀疏表示人脸识别研究 被引量:3
10
作者 项晓丽 武圣 +1 位作者 龙伟 武和雷 《控制工程》 CSCD 北大核心 2018年第3期488-492,共5页
实际的人脸识别系统常常会面临小样本问题,为了提高在小样本情况下人脸识别的分类正确率,提出一种基于虚拟样本的高斯加权稀疏表示的人脸识别方法。该方法首先利用人脸的对称性来构造虚拟训练样本,扩充训练样本集;然后,对每个测试... 实际的人脸识别系统常常会面临小样本问题,为了提高在小样本情况下人脸识别的分类正确率,提出一种基于虚拟样本的高斯加权稀疏表示的人脸识别方法。该方法首先利用人脸的对称性来构造虚拟训练样本,扩充训练样本集;然后,对每个测试样本,利用高斯核距离度量该测试样本和各个训练样本的相似性关系,并将该高斯核距离作为训练样本的权值来形成加权的训练样本集:最后,利用稀疏表示方法进行人脸的识别分类。实验结果比较分析表明,该方法在小样本情况下可以获得更好的识别效果。 展开更多
关键词 人脸识别 小样本问题 虚拟训练样本 高斯核距离 加权的训练样本 相似性关系
在线阅读 下载PDF
基于改进分数阶SVD的块协作表示的小样本人脸识别算法 被引量:4
11
作者 张建明 廖婷婷 +1 位作者 吴宏林 刘宇凯 《计算机工程与科学》 CSCD 北大核心 2018年第7期1237-1243,共7页
随着训练样本数目减少,传统人脸识别方法的性能会急剧下降,因此提出了改进的分数阶SVD(IFSVDR)的块协作表示算法,以提高小样本下人脸识别率。为了减少噪声对分类的干扰,对SVD算法进行改进,利用分数阶增大主要正交基权值,提高特征的判别... 随着训练样本数目减少,传统人脸识别方法的性能会急剧下降,因此提出了改进的分数阶SVD(IFSVDR)的块协作表示算法,以提高小样本下人脸识别率。为了减少噪声对分类的干扰,对SVD算法进行改进,利用分数阶增大主要正交基权值,提高特征的判别力;对相对较小权值进行抑制,降低噪声的干扰。然后,将得到的特征图像用基于块的协作表示算法进行分类(PCRC)。相对传统稀疏分类算法,PCRC融合了集成学习,能更好地解决小样本问题,且CRC计算复杂度低于SRC。在扩展的Yale B和AR人脸数据库上的实验表明,本文提出的算法在单样本的情况下也有较高的识别率。 展开更多
关键词 人脸识别 改进的分数阶奇异值分解 基于块的协作表示分类 小样本问题
在线阅读 下载PDF
基于核鉴别共同矢量的小样本脸像鉴别方法 被引量:1
12
作者 贺云辉 赵力 邹采荣 《电子与信息学报》 EI CSCD 北大核心 2006年第12期2296-2300,共5页
人脸识别中通常存在小样本问题,使得基于Fisher线性鉴别分析的特征抽取方法存在病态奇异问题。近年来针对此问题提出了不同的解决方法,其中基于共同鉴别矢量(DCV)的方法成功克服了已有各种方法存在的缺点,有较好的数值稳定性和较低的计... 人脸识别中通常存在小样本问题,使得基于Fisher线性鉴别分析的特征抽取方法存在病态奇异问题。近年来针对此问题提出了不同的解决方法,其中基于共同鉴别矢量(DCV)的方法成功克服了已有各种方法存在的缺点,有较好的数值稳定性和较低的计算复杂度。该文将DCV方法推广到非线性领域,将两次Gram-Schmidt正交化过程,转化为只需计算两个核矩阵和进行一次Cholesky分解完成,且得到的非线性Fisher鉴别矢量有标准正交的性质。实验验证了所得KDCV方法的识别性能优于DCV方法。 展开更多
关键词 人脸识别 鉴别共同矢量 核方法 小样本问题 FISHER线性鉴别分析
在线阅读 下载PDF
结合数据增强及注意力网络的切割锯片磨损预测
13
作者 王承超 王湘江 《机械科学与技术》 北大核心 2025年第8期1426-1433,共8页
针对切割锯片磨损状态识别的小样本问题,构建了一种基于数据增强及注意力网络的识别模型。首先搭建了磨损实验平台,并采集了振动信号,通过小波包分解对振动信号进行了去噪,然后使用K近邻模型作为评分标准优化了生成对抗网络(GAN),并基于... 针对切割锯片磨损状态识别的小样本问题,构建了一种基于数据增强及注意力网络的识别模型。首先搭建了磨损实验平台,并采集了振动信号,通过小波包分解对振动信号进行了去噪,然后使用K近邻模型作为评分标准优化了生成对抗网络(GAN),并基于K-GAN模型扩充了数据集,分析了生成数据与真实数据的时、频域相似度,表明生成数据与真实数据高度相似。使用注意力网络进行了磨损状态识别,识别准确率达到97.5%,并与优化前的模型进行了对比分析。结果表明本文模型性能优于优化前的模型。 展开更多
关键词 切割锯片 磨损识别 小样本问题 生成对抗网络 注意力网络
在线阅读 下载PDF
船舶结构振动信号的空间样本扩容
14
作者 章林柯 谭友 《船海工程》 北大核心 2019年第4期55-58,62,共5页
针对实际船舶振动信号测试过程中存在的因结构复杂或者传感器数量不足等原因造成的小样本问题,提出结合传递率函数和有限元仿真的空间样本扩容方法,利用有限元软件对实际的结构进行仿真计算,得到仿真状态下相关测点的传递率函数;根据传... 针对实际船舶振动信号测试过程中存在的因结构复杂或者传感器数量不足等原因造成的小样本问题,提出结合传递率函数和有限元仿真的空间样本扩容方法,利用有限元软件对实际的结构进行仿真计算,得到仿真状态下相关测点的传递率函数;根据传递率函数的特点,利用已知测点信号计算得到实际情况下结构上未知测点的信息,以扩充在实际测量过程中无法得到的振动响应信号,实验证实该方法用于解决空间小样本问题可行。 展开更多
关键词 船舶 小样本问题 空间样本扩容 传递率函数 有限元方法
在线阅读 下载PDF
人脸识别中适合于小样本情况下的监督化拉普拉斯判别分析 被引量:8
15
作者 楼宋江 张国印 +1 位作者 潘海为 王庆军 《计算机研究与发展》 EI CSCD 北大核心 2012年第8期1730-1737,共8页
提取有效特征对高维数据的模式分类起着关键的作用.无监督判别投影,通过最大化非局部散度和局部散度之比,在数据降维和特征提取上表现出较好的性能,但是它是一种非监督学习算法,并且存在小样本问题.针对这些问题,提出了监督化拉普拉斯... 提取有效特征对高维数据的模式分类起着关键的作用.无监督判别投影,通过最大化非局部散度和局部散度之比,在数据降维和特征提取上表现出较好的性能,但是它是一种非监督学习算法,并且存在小样本问题.针对这些问题,提出了监督化拉普拉斯判别分析,算法在考虑非局部散度和局部散度时考虑了样本的类别信息;通过丢弃总体拉普拉斯散度矩阵的零空间,并将类内拉普拉斯散度矩阵投影到总体拉普拉斯散度矩阵的主空间中,然后在该空间中进行特征问题的求解,从而避免了小样本问题.通过理论分析,该算法没有任何判别信息损失,同时在计算上效率也较高.在人脸识别上的实验验证了算法的正确性和有效性. 展开更多
关键词 特征提取 人脸识别 保局算法 无监督判别投影 监督化拉普拉斯判别分析 小样本问题
在线阅读 下载PDF
基于点集匹配的缺陷样本图像生成方法 被引量:3
16
作者 高海洋 张明川 +1 位作者 葛泉波 刘华平 《智能系统学报》 CSCD 北大核心 2023年第5期1030-1038,共9页
针对工业缺陷检测中存在的由产品次品率过低、产品迭代更新过快、缺陷种类难以覆盖全部以及缺陷样本高质量标注难度较高导致的小样本问题,使用基于点集匹配的缺陷样本图像生成方法来对缺陷数据进行扩充。将缺陷部位从多特征角度进行变换... 针对工业缺陷检测中存在的由产品次品率过低、产品迭代更新过快、缺陷种类难以覆盖全部以及缺陷样本高质量标注难度较高导致的小样本问题,使用基于点集匹配的缺陷样本图像生成方法来对缺陷数据进行扩充。将缺陷部位从多特征角度进行变换,使用单张样本进行扩充得到不同特征的缺陷图像,解决小样本条件下深度学习方法难以生成高质量缺陷图像的问题。通过图像评估与实验验证,该方法生成的图像具有更好的视觉效果,并且对缺陷与分割模型有着高效的提升。该方法可应用于样本较少的深度学习模型训练过程中,达到扩充样本提高训练效果的目的。 展开更多
关键词 工业 缺陷检测 小样本问题 点集匹配 样本扩充 缺陷样本生成 有效训练 循环生成对抗网络模型 矢量化变分自动编码器
在线阅读 下载PDF
基于回归分析的全体与类样本分类器的比较研究
17
作者 张楠 杨健 《计算机应用与软件》 CSCD 2011年第11期287-289,共3页
针对基于L1范数的Lasso回归与基于L2范数的Ridge回归模型,分别讨论两种分类器的设计方法,即基于Lasso回归的全体与类样本分类器和基于Ridge回归的全体与类样本分类器。分别在2个大样本数据库与2个小样本数据库对所给出的方法进行比较研... 针对基于L1范数的Lasso回归与基于L2范数的Ridge回归模型,分别讨论两种分类器的设计方法,即基于Lasso回归的全体与类样本分类器和基于Ridge回归的全体与类样本分类器。分别在2个大样本数据库与2个小样本数据库对所给出的方法进行比较研究与分析,结果表明基于全体样本的分类器更适合小样本问题,而基于类样本的分类器更适合大样本问题。 展开更多
关键词 回归分析 分类器 小样本问题 样本问题
在线阅读 下载PDF
基于贝叶斯单源域领域泛化算法的天然气管道故障智能诊断 被引量:4
18
作者 董宏丽 商柔 +3 位作者 汪涵博 王闯 陈双庆 管闯 《天然气工业》 EI CAS CSCD 北大核心 2024年第9期27-37,共11页
基于深度学习算法的故障智能诊断模型已被广泛应用于天然气管道运输安全领域,然而管道通常处于准稳态,使得训练集中的故障样本量受限。为此,针对天然气管道故障诊断中因训练集故障样本量有限,导致难以准确诊断的问题,提出了一种基于贝... 基于深度学习算法的故障智能诊断模型已被广泛应用于天然气管道运输安全领域,然而管道通常处于准稳态,使得训练集中的故障样本量受限。为此,针对天然气管道故障诊断中因训练集故障样本量有限,导致难以准确诊断的问题,提出了一种基于贝叶斯单源域领域泛化(BSDG)算法,部署了一种攻击防御策略,通过在攻击阶段明确伪目标域增强路径,并在防御阶段引导模型参数的后验分布向伪域样本得分更高的方向调整,增强模型在面对不同域扰动时的适应性和鲁棒性。研究结果表明:(1)基于贝叶斯网络建立的非定向攻击模型确保伪域样本既保留了与源域的相关性,又引入了足够的域差异来模拟潜在的目标域,由此提升了多源域和单源域设置下的领域泛化诊断准确率;(2)测试结果显示,BSDG算法在多源域泛化任务及两项单源域泛化任务中,相较于性能最优的对比算法,其准确率分别提高了9.79%、5.09%和27.98%;(3)裕度差异损失通过在学习决策边界的过程中引入不确定性,令分类器可以灵活且有效应对频繁的分布变化,显著性测试结果表明BSDG算法在多数场景下显著优于先进对比算法;(4)贝叶斯神经网络通过在权重上引入不确定性,有效提升了BSDG算法的泛化稳定性。结论认为,BSDG算法通过使用基于贝叶斯推理的攻击防御策略,有效扩展了源域模型的决策边界,解决了实际场景数据匮乏导致的深度神经网络泛化能力差的问题,为样本受限情形下的天然气管道故障诊断模型设计提供了理论支撑。 展开更多
关键词 天然气管道 故障智能诊断 迁移学习 贝叶斯神经网络 小样本问题 泛化能力
在线阅读 下载PDF
虚拟样本生成技术研究 被引量:16
19
作者 于旭 杨静 谢志强 《计算机科学》 CSCD 北大核心 2011年第3期16-19,共4页
虚拟样本生成技术主要研究如何利用待研究领域的先验知识并结合已有的训练样本构造辅助样本,扩充训练样本集,提高学习器的泛化能力。作为一种在机器学习中引入先验知识的方法,虚拟样本生成技术已经成为提高小样本学习问题泛化能力的主... 虚拟样本生成技术主要研究如何利用待研究领域的先验知识并结合已有的训练样本构造辅助样本,扩充训练样本集,提高学习器的泛化能力。作为一种在机器学习中引入先验知识的方法,虚拟样本生成技术已经成为提高小样本学习问题泛化能力的主要手段之一,受到了国内外学者广泛研究。首先介绍了虚拟样本的概念,给出了衡量虚拟样本生成技术性能的两个指标,讨论了虚拟样本生成技术对学习器泛化能力的影响。然后根据虚拟样本生成技术的本质将其划分为3类,并针对每一类讨论了几种典型的虚拟样本生成技术,进而指出了现有虚拟样本生成技术存在的一些不足。最后进行总结并对虚拟样本生成技术的进一步发展提出了自己的看法。 展开更多
关键词 虚拟样本 先验知识 泛化能力 机器学习 小样本学习问题
在线阅读 下载PDF
一种不依赖缺陷数据的扁线绕组焊点缺陷检测方法
20
作者 史涔溦 刘炳昊 +1 位作者 邱建琪 史婷娜 《电工技术学报》 CSCD 北大核心 2024年第S1期141-149,共9页
常规基于图像和深度学习的扁线绕组焊点缺陷检测方法需要大量缺陷焊点数据用于训练模型,而实际生产线上扁线绕组缺陷焊点样本十分匮乏,存在小样本和样本类别不平衡的问题。该文基于特征比对提出一种扁线绕组焊点缺陷检测方法,首先使用... 常规基于图像和深度学习的扁线绕组焊点缺陷检测方法需要大量缺陷焊点数据用于训练模型,而实际生产线上扁线绕组缺陷焊点样本十分匮乏,存在小样本和样本类别不平衡的问题。该文基于特征比对提出一种扁线绕组焊点缺陷检测方法,首先使用目标检测模型检测绕组端面上的所有焊点位置,再复用模型的骨干网络提取每个焊点区域的特征,并与训练过程中通过提取正常焊点的中间层特征构建的特征库中的特征作相似性比对,进而检测缺陷并定位缺陷位置。采用产线实拍照片制作了扁线绕组焊点的数据集,并在数据集上完成了实验与对比分析。结果表明,提出的方法在不依赖缺陷样本的情况下,能够准确实现产线实拍图像上焊点的缺陷检测,分类准确率达到98.4%,对缺陷样本的检测精度达97.0%,召回率达100%,算法的受试者工作特征曲线下的面积(AUROC)指标在图像级和像素级上分别达到97.4%、98.0%,满足工业需求。 展开更多
关键词 扁线绕组 激光焊接 深度学习 小样本问题 缺陷检测
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部