期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种小样本数脉冲信号的样本子图分选算法 被引量:4
1
作者 孟祥豪 罗景青 吴世龙 《火力与指挥控制》 CSCD 北大核心 2015年第5期34-39,共6页
针对交错的雷达脉冲信号中,辐射源脉冲样本数较少而无法统计脉间参数规律实现脉冲提取的问题,提出了一种基于自提取样本子图的全脉冲匹配分选算法。该算法利用全脉冲移位匹配搜索自相关函数极大峰值,序贯提取辐射源时间维样本子图,同时... 针对交错的雷达脉冲信号中,辐射源脉冲样本数较少而无法统计脉间参数规律实现脉冲提取的问题,提出了一种基于自提取样本子图的全脉冲匹配分选算法。该算法利用全脉冲移位匹配搜索自相关函数极大峰值,序贯提取辐射源时间维样本子图,同时筛选出匹配脉冲,无需对脉冲特征参数做统计分析,因此,可实现小样本数雷达信号的脉冲提取。仿真实验表明在有脉冲漏失的信号环境中,算法处理样本数充足情况下的脉冲信号与传统多参数统计方法性能相当,而且能提取出小样本数的脉冲信号。 展开更多
关键词 小样本数 样本子图 匹配 分选
在线阅读 下载PDF
小样本条件下行波管可靠性评估方法的研究 被引量:8
2
作者 樊鹤红 刘盼 +1 位作者 赵兴群 孙小菡 《电子学报》 EI CAS CSCD 北大核心 2010年第6期1394-1398,共5页
行波管的可靠性对许多军用装备整机系统的正常运行十分重要.但其结构复杂、价格昂贵,如何在小样本条件下提高其可靠性评估的精度是我们目前面临的问题.在此情况下,利用专家经验、历史数据等先验信息来提高其可靠性评估的精度是一个行之... 行波管的可靠性对许多军用装备整机系统的正常运行十分重要.但其结构复杂、价格昂贵,如何在小样本条件下提高其可靠性评估的精度是我们目前面临的问题.在此情况下,利用专家经验、历史数据等先验信息来提高其可靠性评估的精度是一个行之有效的途径.本文基于模糊隶属函数给出了一种创建行波管可靠性模糊先验分布的方法,并在此基础上利用Bayes方法实现了行波管先验与试验信息的有效融合.对某卫星用行波管进行可靠性评估的实例表明,采用正态型模糊先验分布的行波管可靠性Bayes评估可以在小样本数和试验结尾程度很高的情况下显著提高可靠性评估的精度,同时Bayes估计可随试验样本信息的增加不断得到修正;而模糊先验分布的带宽可用于调节先验信息在后验分布中所占的比重. 展开更多
关键词 行波管 可靠性评估 小样本数 贝叶斯(Bayes)方法 模糊先验信息
在线阅读 下载PDF
Data-driven methods for predicting the representative temperature of bridge cable based on limited measured data
3
作者 WANG Fen DAI Gong-lian +2 位作者 HE Chang-lin GE Hao RAO Hui-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3168-3186,共19页
Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and mai... Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges. 展开更多
关键词 cable-stayed bridges representative temperature gradient boosted regression trees(GBRT)method field test limited measured data
在线阅读 下载PDF
Improvement of large-scale-region landslide susceptibility mapping accuracy by transfer learning
4
作者 ZHANG Wen-gang LIU Song-lin +3 位作者 WANG Lu-qi SUN Wei-xin ZHANG Yan-mei NIE Wen 《Journal of Central South University》 CSCD 2024年第11期3823-3837,共15页
Machine-learning methodologies have increasingly been embraced in landslide susceptibility assessment.However,the considerable time and financial burdens of landslide inventories often result in persistent data scarci... Machine-learning methodologies have increasingly been embraced in landslide susceptibility assessment.However,the considerable time and financial burdens of landslide inventories often result in persistent data scarcity,which frequently impedes the generation of accurate and informative landslide susceptibility maps.Addressing this challenge,this study compiled a nationwide dataset and developed a transfer learning-based model to evaluate landslide susceptibility in the Chongqing region specifically.Notably,the proposed model,calibrated with the warmup-cosine annealing(WCA)learning rate strategy,demonstrated remarkable predictive capabilities,particularly in scenarios marked by data limitations and when training data were normalized using parameters from the source region.This is evidenced by the area under the receiver operating characteristic curve(AUC)values,which exhibited significant improvements of 51.00%,24.40%and 2.15%,respectively,compared to a deep learning model,in contexts where only 1%,5%and 10%of data from the target region were used for retraining.Simultaneously,there were reductions in loss of 16.12%,27.61%and 15.44%,respectively,in these instances. 展开更多
关键词 data-limited cases transfer learning landslide susceptibility machine learning normalization based on the parameters of the source domain
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部