提出了一种快速判别交通流混沌的最大Lyapunov指数改进算法.该算法首先用关联积分法(C-C方法)和C ao方法确定重构相空间的两个重要参数:嵌入维数m和延迟时间,再用小数据量方法计算时间序列的最大Lyapunov指数.这种算法不仅能够很好地重...提出了一种快速判别交通流混沌的最大Lyapunov指数改进算法.该算法首先用关联积分法(C-C方法)和C ao方法确定重构相空间的两个重要参数:嵌入维数m和延迟时间,再用小数据量方法计算时间序列的最大Lyapunov指数.这种算法不仅能够很好地重构原始时间序列的特性,并且能够避免W o lf方法的局限性.应用最大Lyapunov指数改进算法对仿真交通流和实测交通流的时间序列进行了混沌判别,结果表明,基于跟驰模型的仿真交通流和实际交通流中存在混沌现象,最大Lyapunov指数改进算法是准确判定时间序列是否具有混沌特性的一种有效方法.展开更多
Quantized kernel least mean square(QKLMS) algorithm is an effective nonlinear adaptive online learning algorithm with good performance in constraining the growth of network size through the use of quantization for inp...Quantized kernel least mean square(QKLMS) algorithm is an effective nonlinear adaptive online learning algorithm with good performance in constraining the growth of network size through the use of quantization for input space. It can serve as a powerful tool to perform complex computing for network service and application. With the purpose of compressing the input to further improve learning performance, this article proposes a novel QKLMS with entropy-guided learning, called EQ-KLMS. Under the consecutive square entropy learning framework, the basic idea of entropy-guided learning technique is to measure the uncertainty of the input vectors used for QKLMS, and delete those data with larger uncertainty, which are insignificant or easy to cause learning errors. Then, the dataset is compressed. Consequently, by using square entropy, the learning performance of proposed EQ-KLMS is improved with high precision and low computational cost. The proposed EQ-KLMS is validated using a weather-related dataset, and the results demonstrate the desirable performance of our scheme.展开更多
文摘提出了一种快速判别交通流混沌的最大Lyapunov指数改进算法.该算法首先用关联积分法(C-C方法)和C ao方法确定重构相空间的两个重要参数:嵌入维数m和延迟时间,再用小数据量方法计算时间序列的最大Lyapunov指数.这种算法不仅能够很好地重构原始时间序列的特性,并且能够避免W o lf方法的局限性.应用最大Lyapunov指数改进算法对仿真交通流和实测交通流的时间序列进行了混沌判别,结果表明,基于跟驰模型的仿真交通流和实际交通流中存在混沌现象,最大Lyapunov指数改进算法是准确判定时间序列是否具有混沌特性的一种有效方法.
基金supported by the National Key Technologies R&D Program of China under Grant No. 2015BAK38B01the National Natural Science Foundation of China under Grant Nos. 61174103 and 61603032+4 种基金the National Key Research and Development Program of China under Grant Nos. 2016YFB0700502, 2016YFB1001404, and 2017YFB0702300the China Postdoctoral Science Foundation under Grant No. 2016M590048the Fundamental Research Funds for the Central Universities under Grant No. 06500025the University of Science and Technology Beijing - Taipei University of Technology Joint Research Program under Grant No. TW201610the Foundation from the Taipei University of Technology of Taiwan under Grant No. NTUT-USTB-105-4
文摘Quantized kernel least mean square(QKLMS) algorithm is an effective nonlinear adaptive online learning algorithm with good performance in constraining the growth of network size through the use of quantization for input space. It can serve as a powerful tool to perform complex computing for network service and application. With the purpose of compressing the input to further improve learning performance, this article proposes a novel QKLMS with entropy-guided learning, called EQ-KLMS. Under the consecutive square entropy learning framework, the basic idea of entropy-guided learning technique is to measure the uncertainty of the input vectors used for QKLMS, and delete those data with larger uncertainty, which are insignificant or easy to cause learning errors. Then, the dataset is compressed. Consequently, by using square entropy, the learning performance of proposed EQ-KLMS is improved with high precision and low computational cost. The proposed EQ-KLMS is validated using a weather-related dataset, and the results demonstrate the desirable performance of our scheme.