期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于去噪自编码器网络特征降维与改进小批优化K均值算法的海量用户用电行为聚类及分析 被引量:13
1
作者 汪颖 杨维 +1 位作者 肖先勇 张姝 《电力自动化设备》 EI CSCD 北大核心 2022年第6期146-153,共8页
海量用户用电特性的挖掘与分析对实现电网与用户间的双向互动具有十分重要的意义。提出一种适用于海量用户用电行为聚类及分析的算法,以降低算法时间复杂度,提升海量用户负荷数据分析效率。提取用户用电行为特征,构建多层去噪自编码网络... 海量用户用电特性的挖掘与分析对实现电网与用户间的双向互动具有十分重要的意义。提出一种适用于海量用户用电行为聚类及分析的算法,以降低算法时间复杂度,提升海量用户负荷数据分析效率。提取用户用电行为特征,构建多层去噪自编码网络,实现多维特征的降维;利用小批优化K均值算法进行聚类分析,并对算法进行初始聚类质心优化与超参数优化的改进以提升算法收敛速度与效果,其中超参数优化利用基于高斯过程的贝叶斯优化算法进行;利用类间分离度和类内内聚度的相关指标对聚类效果进行评价;通过互信息筛选有效聚类特征,实现用户画像。算例结果表明,所提方法在特征优化、聚类效果与收敛速度上均有较好的表现。 展开更多
关键词 用电行为 特征降维 聚类分析 互信息 小批优化k均值算法 超参数优化 贝叶斯优化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部