期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进Faster R-CNN的小尺度行人检测 被引量:22
1
作者 陈泽 叶学义 +1 位作者 钱丁炜 魏阳洋 《计算机工程》 CAS CSCD 北大核心 2020年第9期226-232,241,共8页
为提高小尺度行人检测的准确性,提出一种基于改进Faster R-CNN的目标检测方法。通过引入基于双线性插值的对齐池化层,避免感兴趣区域池化过程中两次量化操作导致的位置偏差,同时设计基于级联的多层特征融合策略,将具有丰富细节信息的浅... 为提高小尺度行人检测的准确性,提出一种基于改进Faster R-CNN的目标检测方法。通过引入基于双线性插值的对齐池化层,避免感兴趣区域池化过程中两次量化操作导致的位置偏差,同时设计基于级联的多层特征融合策略,将具有丰富细节信息的浅层特征图和具有抽象语义信息的深层特征图进行通道叠加,从而解决小尺度行人在深层特征图中特征信息缺乏的问题。在INRIA和PASCAL VOC2012数据集上的实验结果表明,在小尺度行人检测效率相同的情况下,该方法相比基于Faster R-CNN的检测方法平均精确率均值分别提高了17.58%和23.78%。 展开更多
关键词 小尺度行人检测 区域建议网络 感兴趣区域池化 Faster R-CNN网络 特征融合
在线阅读 下载PDF
基于注意力和多级特征融合的铁路场景小尺度行人检测算法 被引量:9
2
作者 石瑞姣 陈后金 +3 位作者 李居朋 李艳凤 李丰 万成凯 《铁道学报》 EI CAS CSCD 北大核心 2022年第5期76-83,共8页
行人入侵是影响铁路行车安全的重要因素。为有效解决短焦距摄像机在大视场中小尺度行人检测精度低的问题,提出一种注意力机制引导下的多级特征融合网络模型。首先,将YOLOv3作为主干网络,针对多次降采样后行人特征丢失的问题,设计四倍降... 行人入侵是影响铁路行车安全的重要因素。为有效解决短焦距摄像机在大视场中小尺度行人检测精度低的问题,提出一种注意力机制引导下的多级特征融合网络模型。首先,将YOLOv3作为主干网络,针对多次降采样后行人特征丢失的问题,设计四倍降采样分支以利用高分辨率特征有效提取小尺度行人信息。其次,特征融合阶段引入通道-空间注意力机制以抑制低层特征中背景噪声干扰。最后,引入CIoU损失函数用于行人目标框的回归,解决均方误差损失函数存在的优化不一致及尺度敏感问题。实验结果表明,相较于经典YOLOv3以及现阶段主流目标检测算法,本算法具有更高的检测精度,在自建铁路私有数据集和Caltech公开数据集的各子集上对数平均漏检率均有明显降低。 展开更多
关键词 铁路行车安全 小尺度行人检测 多级特征融合 通道-空间注意力 CIoU损失函数
在线阅读 下载PDF
面向复杂道路场景小尺度行人的实时检测算法 被引量:6
3
作者 李昕昕 杨林 《计算机工程与应用》 CSCD 北大核心 2020年第22期124-131,共8页
复杂道路场景中小尺度行人目标检测漏检率高,实时性较差,提出了一种针对小尺度行人检测的增强算法,对RFB(Receptive Field Block)网络从特征提取网络结构及损失函数两方面进行改进:通过反向融合的方式将多尺度特征图通道间Shuffle后的... 复杂道路场景中小尺度行人目标检测漏检率高,实时性较差,提出了一种针对小尺度行人检测的增强算法,对RFB(Receptive Field Block)网络从特征提取网络结构及损失函数两方面进行改进:通过反向融合的方式将多尺度特征图通道间Shuffle后的深层特征组多级融合到浅层,并在采用更浅层特征的同时加入改进RFB模块及Normalization层,充分利用多尺度特征层间的信息进行小尺度行人检测。损失函数采用基于交并比和中心点距离解决评测与回归损失函数评价指标不等价问题。实验结果表明,该算法在Caltech行人数据集上总体行人和小尺度行人的漏检率分别降低了4.7个百分点与9.0个百分点,单张图片平均检测时间为36 ms,性能高于同类算法。 展开更多
关键词 小尺度行人检测 复杂道路场景 多特征融合 通道Shuffle
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部