期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于MDT重叠覆盖度数据的KNN-DBSCAN参数自适应调优研究 被引量:7
1
作者 刘璐 陈睿杰 李嘉 《电信科学》 2022年第2期119-129,共11页
传统网络优化中路测工作存在难以全量测试道路及楼宇、测试工作量大、工作效率低、周期长、受人为因素影响等显性缺点,无法动态关注每个区域网络质量情况,且常规测量报告(measurement report,MR)数据不具备定位信息,无法精确定位如重叠... 传统网络优化中路测工作存在难以全量测试道路及楼宇、测试工作量大、工作效率低、周期长、受人为因素影响等显性缺点,无法动态关注每个区域网络质量情况,且常规测量报告(measurement report,MR)数据不具备定位信息,无法精确定位如重叠覆盖度问题发生位置。基于最小化路测(minimization drive test,MDT)精准定位系统通过采集底层基站MDT数据,并根据重叠覆盖度算法输出高重叠覆盖度栅格,再通过自适应K最近邻-具有噪声的基于密度的聚类方法(K-nearest neighbor density-based spatial clustering of applica-tions with noise,KNN-DBSCAN)联合算法解决了DBSCAN算法对参数设置敏感性问题,并对问题栅格进行非监督聚类,收敛问题连片区域,通过小区采样贡献度进行栅格区域映射,最终达到精准调整全局最高优先级(TOP)小区,降低小区高重叠覆盖度的目的。 展开更多
关键词 KNN-DBSCAN算法 MDT数据 重叠覆盖度 小区贡献度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部