通过自主搭建的石油焦颗粒堆积床导热性能测试实验装置开展了热态实验,探究了石油焦颗粒堆积床在不同粒度与升温速率下料层内外温度的变化规律。基于计算传热学原理,构建了圆柱管径向传热正问题模型,利用Levenberg-Marquardt算法反推导...通过自主搭建的石油焦颗粒堆积床导热性能测试实验装置开展了热态实验,探究了石油焦颗粒堆积床在不同粒度与升温速率下料层内外温度的变化规律。基于计算传热学原理,构建了圆柱管径向传热正问题模型,利用Levenberg-Marquardt算法反推导热系数,并与经典的等效导热系数模型(Bruggeman模型,Maxwell-Garnett模型,Kunii and Smith模型和Zehner-Bauer-Schlünder模型)进行了对比。结果表明,料层壁面与中心的温差随温度升高先增后减,随升温速率增大而增大,且随颗粒粒度减小而增加。基于导热反问题方法,获得了石油焦颗粒堆积床导热系数λ与温度T和等效粒径dp的数学关系式。引入等效粒度系数φ修正后的Kunii and Smith模型计算的导热系数及导热反问题求解的导热系数均与实验数据吻合度较高。研究成果可为罐式炉内石油焦堆积床传热行为的深入剖析提供重要的理论支撑。展开更多
Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the...Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.展开更多
A two-dimensional model for freezing and thawing phase change heat transfer in biological tissue embedded with two cryoprobes was established.In this model,the blood vessels were considered as tree-like branched fract...A two-dimensional model for freezing and thawing phase change heat transfer in biological tissue embedded with two cryoprobes was established.In this model,the blood vessels were considered as tree-like branched fractal network,and the effective flow rate and effective thermal conductivity of blood were obtained by fractal method.The temperature distribution and ice crystal growth process in biological tissue embedded with two cryoprobes during freezing-thawing process were numerically simulated.The results show that the growth velocity of ice crystal in freezing process from 200 to 400 s is more rapid than that from 400 to 600 s. Thawing process of frozen tissue occurs in the regions around cryoprobes tips and tissue boundary simultaneously,and the phase interfaces are close to each other until ice crystal melts completely.The distance of two cryoprobes has a more profound effect on the temperature distribution in freezing process at 400 s than at 800 s.展开更多
文摘通过自主搭建的石油焦颗粒堆积床导热性能测试实验装置开展了热态实验,探究了石油焦颗粒堆积床在不同粒度与升温速率下料层内外温度的变化规律。基于计算传热学原理,构建了圆柱管径向传热正问题模型,利用Levenberg-Marquardt算法反推导热系数,并与经典的等效导热系数模型(Bruggeman模型,Maxwell-Garnett模型,Kunii and Smith模型和Zehner-Bauer-Schlünder模型)进行了对比。结果表明,料层壁面与中心的温差随温度升高先增后减,随升温速率增大而增大,且随颗粒粒度减小而增加。基于导热反问题方法,获得了石油焦颗粒堆积床导热系数λ与温度T和等效粒径dp的数学关系式。引入等效粒度系数φ修正后的Kunii and Smith模型计算的导热系数及导热反问题求解的导热系数均与实验数据吻合度较高。研究成果可为罐式炉内石油焦堆积床传热行为的深入剖析提供重要的理论支撑。
基金Project(xjj20100078) supported by the Fundamental Research Funds for the Central Universities in China
文摘Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.
基金Project(50436030)supported by the National Natural Science Foundation of China
文摘A two-dimensional model for freezing and thawing phase change heat transfer in biological tissue embedded with two cryoprobes was established.In this model,the blood vessels were considered as tree-like branched fractal network,and the effective flow rate and effective thermal conductivity of blood were obtained by fractal method.The temperature distribution and ice crystal growth process in biological tissue embedded with two cryoprobes during freezing-thawing process were numerically simulated.The results show that the growth velocity of ice crystal in freezing process from 200 to 400 s is more rapid than that from 400 to 600 s. Thawing process of frozen tissue occurs in the regions around cryoprobes tips and tissue boundary simultaneously,and the phase interfaces are close to each other until ice crystal melts completely.The distance of two cryoprobes has a more profound effect on the temperature distribution in freezing process at 400 s than at 800 s.