期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于自适应变异混沌粒子群优化和SVM的导弹命中预测模型
被引量:
2
1
作者
许凌凯
杨任农
+1 位作者
张彬超
左家亮
《计算机应用》
CSCD
北大核心
2017年第10期3024-3028,共5页
针对国内外关于导弹命中预测方面存在的研究深度不足、算法寻优能力不强、模型预测精度不高等缺陷,提出一种基于自适应变异混沌粒子群算法(AMCPSO)和支持向量机(SVM)的导弹命中预测模型。首先,对空战数据进行特征提取,构建模型训练所需...
针对国内外关于导弹命中预测方面存在的研究深度不足、算法寻优能力不强、模型预测精度不高等缺陷,提出一种基于自适应变异混沌粒子群算法(AMCPSO)和支持向量机(SVM)的导弹命中预测模型。首先,对空战数据进行特征提取,构建模型训练所需样本库;然后,采用改进的AMCPSO算法对SVM中的惩罚因子C和核函数参数g进行寻优,并用优化后的模型对样本进行预测;最后,与经典PSO算法、BP神经网络法、网格法构建的预测模型进行了对比实验。实验结果表明,所提算法的全局寻优能力与局部寻优能力均得到提高,模型预测精度较高,可为导弹命中预测研究提供一定的参考依据。
展开更多
关键词
支持向量机
自适应变异混沌粒子群优化
导弹命中预测
智能空战
军事航空
在线阅读
下载PDF
职称材料
题名
基于自适应变异混沌粒子群优化和SVM的导弹命中预测模型
被引量:
2
1
作者
许凌凯
杨任农
张彬超
左家亮
机构
空军工程大学航空航天工程学院
出处
《计算机应用》
CSCD
北大核心
2017年第10期3024-3028,共5页
基金
国家自然科学基金资助项目(71501184)~~
文摘
针对国内外关于导弹命中预测方面存在的研究深度不足、算法寻优能力不强、模型预测精度不高等缺陷,提出一种基于自适应变异混沌粒子群算法(AMCPSO)和支持向量机(SVM)的导弹命中预测模型。首先,对空战数据进行特征提取,构建模型训练所需样本库;然后,采用改进的AMCPSO算法对SVM中的惩罚因子C和核函数参数g进行寻优,并用优化后的模型对样本进行预测;最后,与经典PSO算法、BP神经网络法、网格法构建的预测模型进行了对比实验。实验结果表明,所提算法的全局寻优能力与局部寻优能力均得到提高,模型预测精度较高,可为导弹命中预测研究提供一定的参考依据。
关键词
支持向量机
自适应变异混沌粒子群优化
导弹命中预测
智能空战
军事航空
Keywords
Support Vector Machine (SVM)
Adaptively-Mutated Chaotic Particle Swarm Optimization (AMCPSO)
missile hit prediction
intelligent air combat
military aviation
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于自适应变异混沌粒子群优化和SVM的导弹命中预测模型
许凌凯
杨任农
张彬超
左家亮
《计算机应用》
CSCD
北大核心
2017
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部